Diffuse Lyα haloes around galaxies at z = 2.2–6.6: implications for galaxy formation and cosmic reionization

We present diffuse Lyman-alpha halos (LAHs) identified in the composite Subaru narrowband images of 100-3600 Lyman-alpha emitters (LAEs) at z=2.2, 3.1, 3.7, 5.7, and 6.6. First, we carefully examine potential artifacts mimicking LAHs that include a large-scale point-spread function (PSF) made by instrumental and atmospheric effects. Based on our critical test with composite images of non-LAE samples whose narrowband-magnitude and source-size distributions are the same as our LAE samples, we confirm that no artifacts can produce a diffuse extended feature similar to our LAHs. After this test, we measure the scale lengths of exponential profile for the LAHs estimated from our z=2.2-6.6 LAE samples of L(Lyman-alpha) > 2 x 10^42 erg s^-1. We obtain the scale lengths of ~ 5-10 kpc at z=2.2-5.7, and find no evolution of scale lengths in this redshift range beyond our measurement uncertainties. Combining this result and the previously-known UV-continuum size evolution, we infer that the ratio of LAH to UV-continuum sizes is nearly constant at z=2.2-5.7. The scale length of our z=6.6 LAH is larger than 5-10 kpc just beyond the error bar, which is a hint that the scale lengths of LAHs would increase from z=5.7 to 6.6. If this increase is confirmed by future large surveys with significant improvements of statistical and systematical errors, this scale length change at z > 6 would be a signature of increasing fraction of neutral hydrogen scattering Lyman-alpha photons, due to cosmic reionization.

[1]  K. Shimasaku,et al.  WHAT IS THE PHYSICAL ORIGIN OF STRONG Lyα EMISSION? II. GAS KINEMATICS AND DISTRIBUTION OF Lyα EMITTERS , 2014, 1402.1168.

[2]  K. Shimasaku,et al.  WHAT IS THE PHYSICAL ORIGIN OF STRONG Lyα EMISSION? I. DEMOGRAPHICS OF Lyα EMITTER STRUCTURES , 2014, 1401.1209.

[3]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[4]  E. C. Herenz,et al.  The Lyman alpha Reference Sample: II. HST imaging results, integrated properties and trends , 2014 .

[5]  E. C. Herenz,et al.  THE LYMAN ALPHA REFERENCE SAMPLE. II. HUBBLE SPACE TELESCOPE IMAGING RESULTS, INTEGRATED PROPERTIES, AND TRENDS , 2013, 1308.6578.

[6]  K. Shimasaku,et al.  FIRST SYSTEMATIC SEARCH FOR OXYGEN-LINE BLOBS AT HIGH REDSHIFT: UNCOVERING AGN FEEDBACK AND STAR FORMATION QUENCHING , 2013, 1306.5246.

[7]  R. Davé,et al.  PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT z ⩾ 6. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Lyα EMISSION , 2013, 1303.0027.

[8]  E. C. Herenz,et al.  THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT , 2013, 1303.0006.

[9]  E. Gawiser,et al.  SEARCHING FOR NEUTRAL HYDROGEN HALOS AROUND z ∼ 2.1 AND z ∼ 3.1 Lyα EMITTING GALAXIES , 2013, 1301.0462.

[10]  K. Shimasaku,et al.  FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.

[11]  R. Bacon,et al.  Lyman-α emission properties of simulated galaxies: interstellar medium structure and inclination effects , 2012, 1208.4781.

[12]  S. Okamura,et al.  GAS MOTION STUDY OF Lyα EMITTERS AT z ∼ 2 USING FUV AND OPTICAL SPECTRAL LINES, , 2012, 1206.2316.

[13]  Tokyo,et al.  Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents? , 2012, 1204.4934.

[14]  A. Maselli,et al.  Effect of intergalactic medium on the observability of Lyα emitters during cosmic reionization , 2012, 1204.2554.

[15]  R. Kramer,et al.  Line transfer through clumpy, large-scale outflows: Ly α absorption and haloes around star-forming galaxies , 2012, 1203.3803.

[16]  K. Shimasaku,et al.  THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.

[17]  J. Blaizot,et al.  Extended Lyman-alpha emission from cold accretion streams , 2011, 1112.4408.

[18]  S. Okamura,et al.  AVERAGE METALLICITY AND STAR FORMATION RATE OF Lyα EMITTERS PROBED BY A TRIPLE NARROWBAND SURVEY , 2011, 1105.2824.

[19]  S. Okamura,et al.  COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH , 2011, 1104.2330.

[20]  S. Miyazaki,et al.  A Gunn-Peterson test with a QSO at z=6.4 , 2011, 1104.1636.

[21]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[22]  M. Pettini,et al.  DIFFUSE Lyα EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2011, 1101.2204.

[23]  Robin Ciardullo,et al.  THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES , 2010, 1011.0431.

[24]  S. Okamura,et al.  COMPLETING THE CENSUS OF Ly alpha EMITTERS AT THE REIONIZATION EPOCH , 2011 .

[25]  D. Weinberg,et al.  EXTENDED Lyα EMISSION AROUND STAR-FORMING GALAXIES , 2010, 1010.3017.

[26]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[27]  M. Zaldarriaga,et al.  Lyα COOLING EMISSION FROM GALAXY FORMATION , 2010, 1005.3041.

[28]  S. Okamura,et al.  STELLAR POPULATIONS OF Lyα EMITTERS AT z ∼ 6–7: CONSTRAINTS ON THE ESCAPE FRACTION OF IONIZING PHOTONS FROM GALAXY BUILDING BLOCKS , 2010, 1004.0963.

[29]  A. Fontana,et al.  Physical and morphological properties of z ~ 3 Lyman break galaxies: dependence on Lyα line emission , 2010, 1002.2068.

[30]  S. Okamura,et al.  Stellar populations of Lyα emitters at z= 3–4 based on deep large area surveys in the Subaru-SXDS/UKIDSS-UDS Field , 2009, 0911.2544.

[31]  R. Teyssier,et al.  Gravity-driven Lyα blobs from cold streams into galaxies , 2009, 0911.5566.

[32]  S. Miyazaki,et al.  A QSO host galaxy and its Lyα emission at z= 6.43 , 2009, 0908.4079.

[33]  A. Andersen,et al.  Lyα RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES , 2009, 0907.2698.

[34]  P. Hall,et al.  A PUBLIC, K-SELECTED, OPTICAL-TO-NEAR-INFRARED CATALOG OF THE EXTENDED CHANDRA DEEP FIELD SOUTH (ECDFS) FROM THE MULTIWAVELENGTH SURVEY BY YALE–CHILE (MUSYC) , 2009, 0903.3051.

[35]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[36]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[37]  C. Leitherer,et al.  THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES , 2008, 0803.1174.

[38]  J. Sommer-Larsen,et al.  Lyα RADIATIVE TRANSFER IN COSMOLOGICAL SIMULATIONS USING ADAPTIVE MESH REFINEMENT , 2008 .

[39]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). II. Optical Imaging and Photometric Catalogs , 2008, 0801.4017.

[40]  Celine Peroux,et al.  A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems , 2007, 0711.1354.

[41]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[42]  R. Bernstein,et al.  The Optical Extragalactic Background Light: Revisions and Further Comments , 2007 .

[43]  Takashi Hattori,et al.  Reionization and Galaxy Evolution Probed by z = 7 Lyα Emitters , 2007, 0707.1561.

[44]  A. Fontana,et al.  Physical properties of z ~ 4 LBGs: differences between galaxies with and without Lyα emission , 2007, astro-ph/0703013.

[45]  S. Okamura,et al.  The Cosmic Evolution Survey (COSMOS): Subaru Observations of the HST Cosmos Field , 2006, astro-ph/0612295.

[46]  M. Irwin,et al.  The UKIRT Infrared Deep Sky Survey (UKIDSS) , 2006, astro-ph/0604426.

[47]  J. Sommer-Larsen,et al.  Lyα Resonant Scattering in Young Galaxies: Predictions from Cosmological Simulations , 2006, astro-ph/0610761.

[48]  K. Schawinski,et al.  The Physical Nature of Lyα-emitting Galaxies at z = 3.1 , 2006, astro-ph/0603244.

[49]  Cambridge,et al.  The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours , 2006, astro-ph/0601592.

[50]  M. Mori,et al.  The evolution of galaxies from primeval irregulars to present-day ellipticals , 2005, Nature.

[51]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[52]  AGN Feedback Causes Downsizing , 2005, astro-ph/0511116.

[53]  F. Castander,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South , 2005, astro-ph/0509202.

[54]  S. Okamura,et al.  Large-Scale Structure of Emission-Line Galaxies at z = 3.1 , 2004 .

[55]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[56]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[57]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[58]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[59]  P. Madau,et al.  EARLY METAL ENRICHMENT BY PREGALACTIC OUTFLOWS : II . SIMULATIONS OF BLOW – AWAY , 2001 .

[60]  D. Weinberg,et al.  Cooling Radiation and the Lyα Luminosity of Forming Galaxies , 2000, astro-ph/0007205.

[61]  Rene Racine,et al.  THE TELESCOPE POINT SPREAD FUNCTION , 1996 .

[62]  Ivan R. King,et al.  THE PROFILE OF A STAR IMAGE , 1971 .