Computing contour trees in all dimensions

We show that contour trees can be computed in all dimensions by a simple algorithm that merges two trees. Our algorithm extends, simplifies, and improves work of Tarasov and Vyalyi and of van Kreveld et al.

[1]  T. Kanade,et al.  Extracting topographic terrain features from elevation maps , 1994 .

[2]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[3]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997 .

[4]  Koji Koyamada,et al.  Automatic Isosurface Propagation Using an Extrema Graph and Sorted Boundary Cell Lists , 1995, IEEE Trans. Vis. Comput. Graph..

[5]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[6]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, SIGGRAPH 1990.

[7]  Tosiyasu L. Kunii,et al.  Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data , 1995, Comput. Graph. Forum.

[8]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[9]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[10]  Yi-Jen Chiang,et al.  I/O optimal isosurface extraction , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[11]  H. Freeman,et al.  On searching a contour map for a given terrain elevation profile , 1967 .

[12]  Mikhail N. Vyalyi,et al.  Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.

[13]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[14]  Mikhail N. Vyalyi,et al.  Some PL functions on surfaces are not height functions , 1997, SCG '97.

[15]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[16]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[17]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[18]  Edwin H. Blake,et al.  The Mesh Propagation Algorithm for Isosurface Construction , 1994, Comput. Graph. Forum.

[19]  William J. Schroeder,et al.  Interactive out-of-core isosurface extraction , 1998 .

[20]  Roger L. Boyell,et al.  Hybrid techniques for real-time radar simulation , 1963, AFIPS '63 (Fall).

[21]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[22]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[23]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[24]  Baining Guo Interval set: a volume rendering technique generalizing isosurface extraction , 1995, Proceedings Visualization '95.

[25]  Christopher M. Gold,et al.  Spatially ordered networks and topographic reconstructions , 1987, Int. J. Geogr. Inf. Sci..

[26]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[27]  Valerio Pascucci,et al.  Seed Sets and Search Structures for Optimal Isocontour Extraction , 1999 .

[28]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[29]  Gabor T. Herman,et al.  The theory, design, implementation and evaluation of a three-dimensional surface detection algorit , 1981 .

[30]  Paolo Cignoni,et al.  Multiresolution Representation and Visualization of Volume Data , 1997, IEEE Trans. Vis. Comput. Graph..

[31]  Hans-Peter Seidel,et al.  Vision - An Architecture for Global Illumination Calculations , 1995, IEEE Trans. Vis. Comput. Graph..

[32]  Cláudio T. Silva,et al.  I/O optimal isosurface extraction (extended abstract) , 1997, VIS '97.