Solution structure of Mycobacterium tuberculosis NmtR in the apo state: insights into Ni(II)-mediated allostery.

Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.

[1]  D. Giedroc,et al.  A Nickel-Cobalt-sensing ArsR-SmtB Family Repressor , 2002, The Journal of Biological Chemistry.

[2]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[3]  S. Pochapsky,et al.  A Refined Model for the Structure of Acireductone Dioxygenase from Klebsiella ATCC 8724 Incorporating Residual Dipolar Couplings , 2006, Journal of biomolecular NMR.

[4]  Lenwood S. Heath,et al.  H++: a server for estimating pKas and adding missing hydrogens to macromolecules , 2005, Nucleic Acids Res..

[5]  M. Murakami,et al.  Plant Pathogenic Bacteria Utilize Biofilm Growth-associated Repressor (BigR), a Novel Winged-helix Redox Switch, to Control Hydrogen Sulfide Detoxification under Hypoxia* , 2011, The Journal of Biological Chemistry.

[6]  H. Berendsen,et al.  A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field , 1998 .

[7]  J. Berg,et al.  Lessons from zinc-binding peptides. , 1997, Annual review of biophysics and biomolecular structure.

[8]  Alison I. Graham,et al.  NMR Structural Analysis of Cadmium Sensing by Winged Helix Repressor CmtR* , 2007, Journal of Biological Chemistry.

[9]  J. Doll,et al.  Generalized Langevin equation approach for atom/solid–surface scattering: Numerical techniques for Gaussian generalized Langevin dynamics , 1976 .

[10]  S. Pochapsky,et al.  Completing the circuit: direct-observe 13C,15N double-quantum spectroscopy permits sequential resonance assignments near a paramagnetic center in acireductone dioxygenase. , 2008, Journal of the American Chemical Society.

[11]  S. Chakrabarti,et al.  ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus , 1999, Molecular microbiology.

[12]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[13]  J. Latour,et al.  Cooperative metal binding and helical folding in model peptides of treble-clef zinc fingers. , 2009, Chemistry.

[14]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[15]  K. Merz,et al.  Insights into the mechanistic dichotomy of the protein farnesyltransferase peptide substrates CVIM and CVLS. , 2012, Journal of the American Chemical Society.

[16]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[17]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids , 1976 .

[18]  D. Giedroc,et al.  Metal site occupancy and allosteric switching in bacterial metal sensor proteins. , 2012, Archives of biochemistry and biophysics.

[19]  Deenah Osman,et al.  Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. , 2010, Natural product reports.

[20]  D. Giedroc,et al.  Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA. , 2006, Journal of molecular biology.

[21]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.

[22]  K. Taylor,et al.  Crystal structure of the cyanobacterial metallothionein repressor SmtB: a model for metalloregulatory proteins. , 1998, Journal of molecular biology.

[23]  D. Giedroc,et al.  Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR. , 2011, Biochemistry.

[24]  G. A. Petersson,et al.  A Complete Basis Set Model Chemistry. Part 1. The Total Energies of Closed‐Shell Atoms and Hydrides of the First‐Row Elements , 1988 .

[25]  D. Giedroc,et al.  Energetics of allosteric negative coupling in the zinc sensor S. aureus CzrA. , 2009, Journal of the American Chemical Society.

[26]  John A Tainer,et al.  Nickel superoxide dismutase structure and mechanism. , 2004, Biochemistry.

[27]  Kenneth M Merz,et al.  Finding a needle in the haystack: computational modeling of Mg2+ binding in the active site of protein farnesyltransferase. , 2010, Biochemistry.

[28]  T. Ohta,et al.  Chromosome‐Determined Zinc‐Responsible Operon czr in Staphylococcus aureus Strain 912 , 1999, Microbiology and immunology.

[29]  T. Cheatham,et al.  Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations , 2008, The journal of physical chemistry. B.

[30]  D. Giedroc,et al.  The SmtB/ArsR family of metalloregulatory transcriptional repressors: Structural insights into prokaryotic metal resistance. , 2003, FEMS microbiology reviews.

[31]  D. Giedroc,et al.  Structural elements of metal selectivity in metal sensor proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Case,et al.  Generalized Born Models of Macromolecular Solvation Effects , 2001 .

[33]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[34]  Kenneth M Merz,et al.  Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF). , 2010, Journal of chemical theory and computation.

[35]  P. Chivers,et al.  Ni(II) and Co(II) sensing by Escherichia coli RcnR. , 2008, Journal of the American Chemical Society.

[36]  Kenneth M. Merz,et al.  Dynamic Force Field Models: Molecular Dynamics Simulations of Human Carbonic Anhydrase II Using a Quantum Mechanical/Molecular Mechanical Coupled Potential , 1995 .

[37]  G. Marius Clore,et al.  1H1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins , 1990 .

[38]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[39]  D. Auld Zinc coordination sphere in biochemical zinc sites , 2001, Biometals.

[40]  Bruce A. Johnson,et al.  NMR View: A computer program for the visualization and analysis of NMR data , 1994, Journal of biomolecular NMR.

[41]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[42]  Jun Ye,et al.  Crystal Structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-Responsive Repressor , 2005, Journal of bacteriology.

[43]  Michael Gaus,et al.  DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). , 2011, Journal of chemical theory and computation.

[44]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Tong Liu,et al.  CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. , 2007, Nature chemical biology.

[46]  S K Burley,et al.  Winged helix proteins. , 2000, Current opinion in structural biology.

[47]  J. Hinds,et al.  Mycobacterial Cells Have Dual Nickel-Cobalt Sensors , 2007, Journal of Biological Chemistry.

[48]  Bing Wang,et al.  Simulations of allosteric motions in the zinc sensor CzrA. , 2012, Journal of the American Chemical Society.

[49]  D. Giedroc,et al.  Metal sensor proteins: nature's metalloregulated allosteric switches. , 2007, Dalton transactions.

[50]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[51]  D. Giedroc,et al.  Ratiometric pulse-chase amidination mass spectrometry as a probe of biomolecular complex formation. , 2011, Analytical chemistry.

[52]  A. Gronenborn,et al.  Sensitivity-enhanced 2D IPAP, TROSY-anti-TROSY, and E.COSY experiments: alternatives for measuring dipolar 15N-1HN couplings. , 2003, Journal of magnetic resonance.

[53]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[54]  Sandeep Verma,et al.  ATCUN‐like metal‐binding motifs in proteins: Identification and characterization by crystal structure and sequence analysis , 2004, Proteins.

[55]  D. Giedroc,et al.  Coordination Chemistry of Bacterial Metal Transport and Sensing , 2010 .

[56]  P. Güntert Automated NMR structure calculation with CYANA. , 2004, Methods in molecular biology.

[57]  D. Giedroc,et al.  Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state , 2009, Proceedings of the National Academy of Sciences.

[58]  S. Grzesiek,et al.  Correlation of Backbone Amide and Aliphatic Side-Chain Resonances in 13C/15N-Enriched Proteins by Isotropic Mixing of 13C Magnetization , 1993 .

[59]  D. Giedroc,et al.  Metalloregulatory proteins: metal selectivity and allosteric switching. , 2011, Biophysical chemistry.

[60]  Richard L Martin,et al.  Revised Basis Sets for the LANL Effective Core Potentials. , 2008, Journal of chemical theory and computation.

[61]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[62]  G. George,et al.  A high-affinity metal-binding peptide from Escherichia coli HypB. , 2008, Journal of the American Chemical Society.

[63]  Dhruva K. Chakravorty,et al.  Insight into the cation-π interaction at the metal binding site of the copper metallochaperone CusF. , 2011, Journal of the American Chemical Society.

[64]  Ross C Walker,et al.  Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the amber molecular dynamics package. , 2007, The journal of physical chemistry. A.

[65]  Gaetano T. Montelione,et al.  An efficient triple resonance experiment using carbon-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins , 1992 .

[66]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[67]  S. Krishna,et al.  Metal ion transport and regulation in Mycobacterium tuberculosis. , 2004, Frontiers in bioscience : a journal and virtual library.

[68]  Chuan He,et al.  Selective recognition of metal ions by metalloregulatory proteins. , 2008, Current opinion in chemical biology.

[69]  James C Sacchettini,et al.  A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. , 2003, Journal of molecular biology.

[70]  T. Darden,et al.  The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods , 1993 .

[71]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[72]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.