Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model

The characteristics and sensitivities of a cold-based glacier on the Tibetan Plateau, where the summer monsoon provides most of the mass input to glaciers, are discussed using an energy-balance model incorporating the process of water refreezing. The model accurately represents the observational results related to the mass balance of Xiao Dongkemadi glacier on the central plateau during 1992/93. Our data revealed that the mass balance of cold glaciers cannot simply be described by the surface mass/heat balances, because about 20% of infiltrated water is refrozen and thus does not run off from the glacier. Model calculations demonstrate that glaciers in an arid environment can maintain their mass since the monsoon provides precipitation during the melting season. Snowfall in summer keeps surface albedo high and largely restrains ablation. Nevertheless, the calculations also make clear that glaciers on the plateau are more vulnerable than those of other regions because of summer accumulation. In the monsoon climate, warming would cause not only a decrease in accumulation, but also a drastic increase in ablation in combination with surface-albedo lowering. Therefore, although glaciers on and around the plateau can be sustained by summer accumulation, they are more vulnerable to warming than winter-accumulation-type glaciers.