Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits

[1]  D. Zueco,et al.  Nanoscale constrictions in superconducting coplanar waveguide resonators , 2019 .

[2]  M. Affronte,et al.  Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits , 2017, Scientific Reports.

[3]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[4]  M. Affronte,et al.  Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits. , 2016, Dalton transactions.

[5]  L. Sorace,et al.  Giant spin-phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence. , 2016, Dalton transactions.

[6]  F Luis,et al.  A scalable architecture for quantum computation with molecular nanomagnets. , 2016, Dalton transactions.

[7]  M. Chiesa,et al.  Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety. , 2016, Journal of the American Chemical Society.

[8]  M. Affronte,et al.  Coherently coupling distinct spin ensembles through a high-T c superconducting resonator , 2016, 1605.02879.

[9]  E. Coronado,et al.  Enhancing coherence in molecular spin qubits via atomic clock transitions , 2016, Nature.

[10]  J. van Slageren,et al.  Tuning of molecular qubits: very long coherence and spin-lattice relaxation times. , 2016, Chemical communications.

[11]  Yimin Liu,et al.  Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator , 2016, Scientific Reports.

[12]  M. Chiesa,et al.  Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. , 2016, Journal of the American Chemical Society.

[13]  A. Caneschi,et al.  Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits , 2015, Chemical science.

[14]  Robert Kohl,et al.  Electron Paramagnetic Resonance Of Transition Ions , 2016 .

[15]  A. Chiesa,et al.  Coherent Spin Dynamics in Molecular Cr8Zn Wheels. , 2015, The journal of physical chemistry letters.

[16]  Joseph M. Zadrozny,et al.  Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit , 2015, ACS central science.

[17]  M. Brandt,et al.  High cooperativity coupling between a phosphorus donor spin ensemble and a superconducting microwave resonator , 2015, 1507.03739.

[18]  M. Affronte,et al.  YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles , 2015, 1503.06145.

[19]  Joseph M. Zadrozny,et al.  Multiple quantum coherences from hyperfine transitions in a vanadium(IV) complex. , 2014, Journal of the American Chemical Society.

[20]  Petr Neugebauer,et al.  Room temperature quantum coherence in a potential molecular qubit , 2014, Nature Communications.

[21]  D. Zueco,et al.  Nanometric constrictions in superconducting coplanar waveguide resonators , 2014, 1409.1040.

[22]  M. Siegel,et al.  Strong coupling of an Er 3+ -doped YAlO3 crystal to a superconducting resonator , 2014, 1402.5242.

[23]  D. Hendrickson,et al.  Collective coupling of a macroscopic number of single-molecule magnets with a microwave cavity mode. , 2012, Physical review letters.

[24]  Gabriel Aeppli,et al.  Potential for spin-based information processing in a thin-film molecular semiconductor , 2013, Nature.

[25]  T. Yokoyama,et al.  Molecular Orientation and Electronic States of Vanadyl Phthalocyanine on Si(111) and Ag(111) Surfaces , 2013 .

[26]  D. Zueco,et al.  Coupling single-molecule magnets to quantum circuits , 2013, 1306.4276.

[27]  Klaus Mølmer,et al.  Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. , 2013, Physical review letters.

[28]  M. Siegel,et al.  Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. , 2012, Physical Review Letters.

[29]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[30]  C J Wedge,et al.  Chemical engineering of molecular qubits. , 2012, Physical review letters.

[31]  J. Cole,et al.  Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator , 2011 .

[32]  J. Morton,et al.  Electron spin ensemble strongly coupled to a three-dimensional microwave cavity , 2011, 1106.0507.

[33]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[34]  K. Mølmer,et al.  Spectroscopic properties of inhomogeneously broadened spin ensembles in a cavity , 2011, 1101.4828.

[35]  A. Auffeves,et al.  Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories , 2011, 1101.1842.

[36]  M. Murrie,et al.  Magnetic properties of two new Fe(4) single-molecule magnets in the solid state and in frozen solution. , 2010, Chemistry.

[37]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[38]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[39]  S. Miyashita,et al.  Magnetic strong coupling in a spin-photon system and transition to classical regime , 2010, 1004.3605.

[40]  R J Schoelkopf,et al.  Quantum computing with an electron spin ensemble. , 2009, Physical review letters.

[41]  Susumu Takahashi,et al.  Coherent manipulation and decoherence of s=10 single-molecule magnets. , 2008, Physical review letters.

[42]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[43]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[44]  S. Bernardis,et al.  Electronic structure of the organic semiconductor vanadyl phthalocyanine (VO-Pc) , 2007 .

[45]  A. Tkachuk,et al.  Rare-earth solid-state qubits. , 2007, Nature nanotechnology.

[46]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[47]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[48]  A. Kent,et al.  Quantum superposition of high spin states in the single molecule magnet Ni4. , 2004, Physical review letters.

[49]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[50]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[51]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .