The process by which viruses destabilize endosomal membranes in an acidification-dependent manner has been mimicked with synthetic peptides that are able to disrupt liposomes, erythrocytes, or endosomes of cultured cells. Peptides containing the 20 amino-terminal amino acid sequence of influenza virus hemagglutinin as well as acidic derivatives showed erythrocyte lysis activity only when peptides were elongated by an amphipathic helix or by carboxyl-terminal dimerization. Interestingly, peptides consisting of the 23 amino-terminal amino acids of influenza virus hemagglutinin were also active in erythrocyte lysis. When peptides were incorporated into DNA complexes that utilize a receptor-mediated endocytosis pathway for uptake into cultured cells, either by ionic interaction with positively charged polylysine-DNA complexes or by a streptavidin-biotin bridge, a strong correlation between pH-specific erythrocyte disruption activity and gene transfer was observed. A high-level expression of luciferase or interleukin-2 was obtained with optimized gene transfer complexes in human melanoma cells and several cell lines.