A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths

Abstract. A main limitation today in simulations and inversions of microwave observations of ice hydrometeors (cloud ice, snow, hail, etc.) is the lack of data describing the interaction between electromagnetic waves and the particles. To improve the situation, the development of a comprehensive dataset of such scattering properties has been started. The database aims at giving a broad coverage in both frequency (1 to 886 GHz) and temperature (190 to 270 K), to support both passive and active current and planned measurements, and to provide data corresponding to the full Stokes vector. This first version of the database is restricted to totally random particle orientation. Data for 34 particle sets, i.e. habits, have been generated. About 17 of the habits can be classified as single crystals, three habits can be seen as heavily rimed particles, and the remaining habits are aggregates of different types, e.g. snow and hail. The particle sizes considered vary between the habits, but maximum diameters of 10 and 20 mm are typical values for the largest single crystal and aggregate particles, respectively, and the number of sizes per habit is at least 30. Particles containing liquid water are also inside the scope of the database, but this phase of water is so far only represented by a liquid sphere habit. The database is built upon the netCDF4 file format. Interfaces to browse, extract and convert data for selected radiative transfer models are provided in MATLAB and Python. The database and associated tools are publicly available from Zenodo (https://doi.org/10.5281/zenodo.1175572, Ekelund et al., 2018b), and https://doi.org/10.5281/zenodo.1175588, Mendrok et al., 2018, respectively). Planned extensions include non-spherical raindrops, melting particles and a second orientation case that can be denoted as azimuthally random.

[1]  P. Eriksson,et al.  ARTS Microwave Single Scattering Properties Database Interfaces , 2018 .

[2]  P. Eriksson,et al.  ARTS Microwave Single Scattering Properties Database , 2018 .

[3]  E. Hesse,et al.  The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models , 2018 .

[4]  P. Eriksson,et al.  ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition , 2017 .

[5]  M. Burgdorf,et al.  Retrieval of an ice water path over the ocean from ISMAR and MARSS millimeter and submillimeter brightness temperatures , 2017 .

[6]  F. Joseph Turk,et al.  Observed differences of triple-frequency radar signatures between snowflakes in stratiform and convective clouds , 2017 .

[7]  D. N. Piyush,et al.  Retrieval of cloud ice water path using SAPHIR on board Megha-Tropiques over the tropical ocean , 2017 .

[8]  Fuzhong Weng,et al.  Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing , 2017 .

[9]  E. Hesse,et al.  The applicability of physical optics in the millimetre and sub-millimetre spectral region. : Part I: The ray tracing with diffraction on facets method , 2017 .

[10]  Jana Mendrok,et al.  Information content on hydrometeors from millimeter and sub-millimeter wavelengths , 2017 .

[11]  P. Brown,et al.  Airborne observations of the microphysical structure of two contrasting cirrus clouds , 2016 .

[12]  Eugene E. Clothiaux,et al.  A polarimetric scattering database for non-spherical ice particles at microwave wavelengths , 2016 .

[13]  S. Fox,et al.  ISMAR: an airborne submillimetre radiometer , 2016 .

[14]  Jie Gong,et al.  Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements. , 2016, Atmospheric chemistry and physics.

[15]  Kwo-Sen Kuo,et al.  The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated Pristine Crystals and Aggregate Particles, and Their Scattering Properties , 2016 .

[16]  J. Mahfouf,et al.  Towards the assimilation of all-sky microwave radiances from the SAPHIR humidity sounder in a limited area NWP model over tropical regions , 2016 .

[17]  W. Olson,et al.  The microwave properties of simulated melting precipitation particles: sensitivity to initial melting. , 2016, Atmospheric measurement techniques.

[18]  David D. Turner,et al.  An Improved Liquid Water Absorption Model at Microwave Frequencies for Supercooled Liquid Water Clouds , 2016 .

[19]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[20]  Jussi Leinonen,et al.  Radar signatures of snowflake riming: A modeling study , 2015, Earth and space science.

[21]  P. Kollias,et al.  Observed relations between snowfall microphysics and triple‐frequency radar measurements , 2015 .

[22]  N. Ehsan,et al.  IceCube: CubeSat 883-GHz Radiometry for Future Ice Cloud Remote Sensing , 2015 .

[23]  Timothy J. Garrett,et al.  Orientations and aspect ratios of falling snow , 2015 .

[24]  Jana Mendrok,et al.  On the microwave optical properties of randomly oriented ice hydrometeors , 2014 .

[25]  P. Eriksson,et al.  Overview and sample applications of SMILES and Odin-SMR retrievals of upper tropospheric humidity and cloud ice mass , 2014 .

[26]  F. Marzano,et al.  Scattering properties of modeled complex snowflakes and mixed‐phase particles at microwave and millimeter frequencies , 2014 .

[27]  V. Chandrasekar,et al.  Characterizing falling snow using multifrequency dual‐polarization measurements , 2014 .

[28]  Alan J. Geer,et al.  Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies , 2014 .

[29]  Simone Tanelli,et al.  Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models , 2014 .

[30]  A. Heymsfield,et al.  Observational quantification of the separation of simple and complex atmospheric ice particles , 2014 .

[31]  Jana Mendrok,et al.  SPARE‐ICE: Synergistic ice water path from passive operational sensors , 2014 .

[32]  Shepard A. Clough,et al.  A physical approach for a simultaneous retrieval of sounding, surface, hydrometeor, and cryospheric parameters from SNPP/ATMS , 2013 .

[33]  A. Baran A new application of a multifrequency submillimeter radiometer in determining the microphysical and macrophysical properties of volcanic plumes: A sensitivity study , 2012 .

[34]  X. Zou,et al.  Introduction to Suomi national polar‐orbiting partnership advanced technology microwave sounder for numerical weather prediction and tropical cyclone applications , 2012 .

[35]  R. P. Lawson,et al.  Ice hydrometeor profile retrieval algorithm for high frequency microwave radiometers: application to the CoSSIR instrument during TC4 , 2012 .

[36]  A. Baran From the single-scattering properties of ice crystals to climate prediction: A way forward , 2012 .

[37]  Susanne Crewell,et al.  Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8 , 2012 .

[38]  V. Kangas,et al.  MetOp Second Generation Microwave radiometers , 2012, 2012 12th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[39]  Jussi Leinonen,et al.  Radar Backscattering from Snowflakes: Comparison of Fractal, Aggregate, and Soft Spheroid Models , 2011 .

[40]  P. Yang,et al.  Temperature dependence of ice optical constants: Implications for simulating the single-scattering properties of cold ice clouds , 2011 .

[41]  Alfons G. Hoekstra,et al.  The discrete-dipole-approximation code ADDA: Capabilities and known limitations , 2011 .

[42]  Wanchun Chen,et al.  MiRS: An All-Weather 1DVAR Satellite Data Assimilation and Retrieval System , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[43]  C. Emde,et al.  ARTS, the atmospheric radiative transfer simulator, version 2 , 2011 .

[44]  P. Eriksson,et al.  On cloud ice induced absorption and polarisation effects in microwave limb sounding , 2011 .

[45]  Ralf Bennartz,et al.  A triple‐frequency approach to retrieve microphysical snowfall parameters , 2011 .

[46]  V. Giraud,et al.  Microphysical characterisation of West African MCS anvils , 2010 .

[47]  Quanhua Liu,et al.  Scattering database in the millimeter and submillimeter wave range of 100–1000 GHz for nonspherical ice particles , 2009 .

[48]  Guosheng Liu,et al.  A database of microwave single-scattering properties for nonspherical ice particles , 2008 .

[49]  W. Linwood Jones,et al.  Simulation of the Stokes vector in inhomogeneous precipitation , 2008 .

[50]  Alyn Lambert,et al.  Validation of the Aura MLS cloud ice water content measurements , 2008 .

[51]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave: A revised compilation , 2008 .

[52]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[53]  Mattias Ekström,et al.  Atmospheric Chemistry and Physics Comparison between Early Odin-smr, Aura Mls and Cloudsat Retrievals of Cloud Ice Mass in the Upper Tropical Troposphere , 2022 .

[54]  P. Field,et al.  Snow Size Distribution Parameterization for Midlatitude and Tropical Ice Clouds , 2007 .

[55]  Justus Notholt,et al.  A cloud filtering method for microwave upper tropospheric humidity measurements , 2007 .

[56]  Pavlos Kollias,et al.  Millimeter-Wavelength Radars: New Frontier in Atmospheric Cloud and Precipitation Research , 2007 .

[57]  T. R. Sreerekha,et al.  A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude , 2007 .

[58]  S. Matrosov,et al.  CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation‐driven upside‐down lidar analog , 2007 .

[59]  Gang Hong,et al.  Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies , 2007 .

[60]  W. Ellison,et al.  Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100 °C , 2007 .

[61]  Peter Bauer,et al.  Multiple‐scattering microwave radiative transfer for data assimilation applications , 2006 .

[62]  Yasushi Fujiyoshi,et al.  Monte Carlo Simulation of the Formation of Snowflakes , 2005 .

[63]  Claudia Emde,et al.  A 3-D polarized reversed Monte Carlo radiative transfer model for Millimeter and submillimeter passive remote sensing in cloudy atmospheres , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Stefan Buehler,et al.  ARTS, the atmospheric radiative transfer simulator , 2005 .

[65]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[66]  Christian Mätzler,et al.  MATLAB Functions for Mie Scattering and Absorption Version 2 , 2002 .

[67]  K. Liou,et al.  Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .

[68]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[69]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[70]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[71]  Andrew J. Heymsfield,et al.  Parameterization of Tropical Cirrus Ice Crystal Size Distributions and Implications for Radiative Transfer: Results from CEPEX , 1997 .

[72]  D. Mitchell Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities , 1996 .

[73]  W. J. Ellison,et al.  Water: a dielectric reference , 1996 .

[74]  Graeme L. Stephens,et al.  Microwave radiative transfer through clouds composed of realistically shaped ice crystals , 1995 .

[75]  Graeme L. Stephens,et al.  Microweve Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II. Remote Sensing of Ice Clouds. , 1995 .

[76]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[77]  W. Patrick Arnott,et al.  A Model Predicting the Evolution of Ice Particle Size Spectra and Radiative Properties of Cirrus Clouds. Part II: Dependence of Absorption and Extinction on Ice Crystal Morphology. , 1994 .

[78]  T. Manabe,et al.  A model for the complex permittivity of water at frequencies below 1 THz , 1991 .

[79]  P. Davis,et al.  Methods of Numerical Integration , 1985 .

[80]  S. Warren,et al.  Optical constants of ice from the ultraviolet to the microwave. , 1984, Applied optics.

[81]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[82]  P. Ray,et al.  Broadband complex refractive indices of ice and water. , 1972, Applied optics.

[83]  A. H. Auer,et al.  The Dimension of Ice Crystals in Natural Clouds , 1970 .

[84]  C. Magono,et al.  Meteorological Classification of Natural Snow Crystals , 1966 .

[85]  Torbjörn Rathsman,et al.  A software toolkit for generating ice and snow particle sharp data , 2016 .

[86]  C. Prigent,et al.  Microwave Absorption, Emission and Scattering: Trace Gases and Meteorological Parameters , 2011 .

[87]  Christian Mätzler,et al.  Thermal Microwave Radiation: Applications for Remote Sensing , 2006 .

[88]  M. Mina,et al.  Absorption and scattering properties of arbitrarily shaped particles in the Rayleigh domain A rapid computational method and a theoretical foundation for the statistical approach , 2005 .

[89]  S. A. Buehlera,et al.  ARTS , the atmospheric radiative transfer simulator , 2004 .

[90]  Nthony,et al.  Measuring Crystal Size in Cirrus Using 35 and 94 GHz Radars , 2002 .

[91]  Christian Mätzler,et al.  MATLAB Functions for Mie Scattering and Absorption , 2002 .

[92]  Interferometric Cartwheel,et al.  Capabilities and Limitations of the , 2001 .

[93]  Henri Sauvageot,et al.  Measuring Crystal Size in Cirrus Using 35- and 94-GHz Radars , 2000 .

[94]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[95]  G. Hufford,et al.  A model for the complex permittivity of ice at frequencies below 1 THz , 1991 .

[96]  Philip J. Davis,et al.  Chapter 6 – Automatic Integration , 1984 .

[97]  M. Kajikawa,et al.  Observation of the Falling Motion of Early Snow Flakes: Part I. Relationship between the Free-fall Pattern and the Number and Shape of Component Snow Crystals@@@第1部:自由落下パターンと構成雪結晶の数および形との関係 , 1982 .

[98]  Claudia Emde,et al.  A 3 D Polarized Reversed Monte Carlo Radiative Transfer Model for mm and sub-mm Passive Remote Sensing in Cloudy Atmospheres , 2022 .