Construction of class regions by a randomized algorithm: a randomized subclass method

A randomized algorithm is proposed for solving the problem of finding hyper-rectangles, sufficiently approximating the true region in each class. This method yields a suboptimal solution, but is more efficient than previous methods. The performance is analysed based on a criterion of PAC (Probably Approximately Correct) learning. Experimental results show that the proposed method can solve large problems which were not able to be solved previously.