Hybrid High‐Resolution Three‐Dimensional Nanofabrication for Metamaterials and Nanoplasmonics

We propose a novel hybrid fabrication approach that combines direct laser writing with a subsequent electron-beam lithography step. This approach allows realizing out-of-plane plasmonic nanostructures with truly nanoscopic feature sizes. The excellent quality of the obtained structures is evidenced by optical characterization of upright-standing split-ring resonator arrays fabricated along these lines.

[1]  B. Jia,et al.  Dynamic modeling of superresolution photoinduced-inhibition nanolithography , 2012 .

[2]  A. Tünnermann,et al.  Polarization-independent negative-index metamaterial in the near infrared. , 2009, Optics letters.

[3]  E. Kapon,et al.  Focused electron beam induced deposition of gold , 2000 .

[4]  Baohua Jia,et al.  High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. , 2011, Optics express.

[5]  Namkyoo Park,et al.  Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. , 2012, ACS nano.

[6]  Yahya Rahmat-Samii,et al.  Fractal antennas: a novel antenna miniaturization technique, and applications , 2002 .

[7]  Yuri S. Kivshar,et al.  Optical Yagi-Uda nanoantennas , 2012, 1204.0330.

[8]  A. Bettiol,et al.  Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications , 2011 .

[9]  Harald Giessen,et al.  Three‐Dimensional Bichiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver Plating , 2011, Advanced materials.

[10]  Din Ping Tsai,et al.  Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. , 2011, Optics express.

[11]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[12]  S. Linden,et al.  Photonic metamaterials by direct laser writing and silver chemical vapour deposition. , 2008, Nature materials.

[13]  R. Byer,et al.  Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip architectures , 2011, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[14]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[15]  Y. Kivshar,et al.  Enhanced emission and light control with tapered plasmonic nanoantennas , 2011, 1104.4865.

[16]  Harald Giessen,et al.  3D optical Yagi–Uda nanoantenna array , 2011, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[17]  Martin Wegener,et al.  Ultrafast polymerization inhibition by stimulated emission depletion for three-dimensional nanolithography. , 2012, Advanced materials.

[18]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[19]  Igal Brener,et al.  Micrometer‐Scale Cubic Unit Cell 3D Metamaterial Layers , 2010, Advanced materials.

[20]  A. Lupu,et al.  Metal-dielectric metamaterials for guided wave silicon photonics. , 2011, Optics express.

[21]  Muntasir Hossain,et al.  Broadband optical absorptions in inversed woodpile metallic photonic crystals , 2012 .

[22]  Kurt Busch,et al.  Three‐Dimensional Nanostructures for Photonics , 2010 .

[23]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[24]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.