A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields.

For molecules in high intensity oscillating electric fields, the time-dependent Hartree-Fock (TDHF) method is used to simulate the behavior of the electronic density prior to ionization. Since a perturbative approach is no longer valid at these intensities, the full TDHF equations are used to propagate the electronic density. A unitary transform approach is combined with the modified midpoint method to provide a stable and efficient algorithm to integrate these equations. The behavior of H2+ in an intense oscillating field computed using the TDHF method with a STO-3G basis set reproduces the analytic solution for the two-state coherent excitation model. For H2 with a 6-311++G(d,p) basis set, the TDHF results are nearly indistinguishable from calculations using the full time-dependent Schrödinger equation. In an oscillating field of 3.17 x 10(13) W cm(-2) and 456 nm, the molecular orbital energies, electron populations, and atomic charges of H2 follow the field adiabatically. As the field intensity is increased, the response becomes more complicated as a result of contributions from excited states. Simulations of N2 show even greater complexity, yet the average charge still follows the field adiabatically.

[1]  A. Bandrauk,et al.  Application of the finite element method to time-dependent quantum mechanics: I. H and He in a laser field , 1994 .

[2]  W. R. Salzman Time Evolution of Simple Quantum-Mechanical Systems. II. Two-State System in Intense Fields , 1971 .

[3]  A. Bandrauk,et al.  EXACT NUMERICAL CALCULATIONS OF DISSOCIATIVE-IONIZATION OF MOLECULAR IONS IN INTENSE LASER FIELDS : NON-BORN-OPPENHEIMER DYNAMICS , 1997 .

[4]  Muller,et al.  Observation of large populations in excited states after short-pulse multiphoton ionization. , 1992, Physical review letters.

[5]  Chelkowski,et al.  Asymmetric electron-nuclear dynamics in two-color laser fields: laser phase directional control of photofragments in H+2 , 2000, Physical review letters.

[6]  H. Schlegel,et al.  Nonadiabatic dynamics of polyatomic molecules and ions in strong laser fields , 2003 .

[7]  M. Ivanov,et al.  A semiclassical approach to intense‐field above‐threshold dissociation in the long wavelength limit , 1996 .

[8]  Antonetti,et al.  Multielectron dissociative ionization of diatomic molecules in an intense femtosecond laser field. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[9]  André D. Bandrauk,et al.  Electron-nuclear dynamics of multiphoton H + 2 dissociative ionization in intense laser fields , 1998 .

[10]  Bruce W. Shore,et al.  Theory of Coherent Atomic Excitation , 1991 .

[11]  Frank L. Yip,et al.  A Local-Time Algorithm for Achieving Quantum Control† , 2003 .

[12]  S. Mukamel,et al.  Ground-state density-matrix algorithm for excited-state adiabatic surfaces: application to polyenes , 1999 .

[13]  H. Muller Numerical simulation of high-order above-threshold-ionization enhancement in argon , 1999 .

[14]  Akira Takahashi,et al.  Anharmonic oscillator modeling of nonlinear susceptibilities and its application to conjugated polymers , 1994 .

[15]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[16]  Accurate symplectic integrators via random sampling , 1995 .

[17]  R. Levis,et al.  PHOTOEXCITATION, IONIZATION, AND DISSOCIATION OF MOLECULES USING INTENSE NEAR-INFRARED RADIATION OF FEMTOSECOND DURATION , 1999 .

[18]  Manfred Lein,et al.  Strong-field ionization dynamics of a model H 2 molecule , 2002 .

[19]  H. Muller Tunneling Excitation to Resonant States in Helium as Main Source of Superponderomotive Photoelectrons in the Tunneling Regime , 1999 .

[20]  P. Bucksbaum,et al.  Above-threshold ionisation with a two-colour laser field , 1990 .

[21]  A. Bandrauk,et al.  Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  S. Mukamel,et al.  Charge and bonding redistribution in octatetraene driven by a strong laser field: Time-dependent Hartree–Fock simulation , 2003 .

[23]  Jon H. Shirley,et al.  Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .

[24]  P. Taday,et al.  Manipulation of bond hardening in H-2(+) by chirping of intense femtosecond laser pulses , 1999 .

[25]  A. Bandrauk,et al.  Dissociative ionization of D 2 in intense laser fields: D + -ion production perpendicular to the polarization of a 400-nm laser field , 2000 .

[26]  P. Corkum,et al.  Internal laser-induced dipole force at work in C60 molecule. , 2003, Physical review letters.

[27]  Ivanov,et al.  Nonadiabatic Multielectron Dynamics in Strong Field Molecular Ionization. , 2001, Physical review letters.

[28]  J. Moloney,et al.  Time dependence of a two-level system for arbitrary sinusoidal field strengths and times , 1975 .

[29]  J. M. Sanz-Serna,et al.  Classical numerical integrators for wave‐packet dynamics , 1996 .

[30]  S. Mukamel,et al.  The coupled electronic oscillators vs the sum‐over‐states pictures for the optical response of octatetraene , 1996 .

[31]  M. Ivanov,et al.  Polyatomic molecules in strong laser fields: Nonadiabatic multielectron dynamics , 2002 .

[32]  Charles K. Rhodes,et al.  Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases , 1987 .

[33]  D. Micha Density Matrix Treatment of Electronic Rearrangement , 1999 .

[34]  S. Mukamel,et al.  Many-body effects in molecular photoionization in intense laser fields; time-dependent Hartree-Fock simulations. , 2004, The Journal of chemical physics.

[35]  S. Gray,et al.  Classical Hamiltonian structures in wave packet dynamics , 1994 .

[36]  Schumacher,et al.  Softening of the H2+ molecular bond in intense laser fields. , 1990, Physical review letters.

[37]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[38]  S. Mukamel,et al.  Nonlinear Polarizabilities of Donor-Acceptor Substituted Conjugated Polyenes , 1996 .

[39]  Frank L. Yip,et al.  A propagation toolkit to design quantum controls , 2003 .

[40]  Freeman,et al.  Verification of the dominant role of resonant enhancement in short-pulse multiphoton ionization. , 1992, Physical review letters.

[41]  Bandrauk,et al.  Superdressed H2+ and H32+ molecular ions in intense, high-frequency laser fields. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  A. Bandrauk,et al.  Coherence phenomena in atoms and molecules in laser fields , 1992 .

[43]  D. Manolopoulos,et al.  Symplectic integrators for the multichannel Schrödinger equation , 1995 .

[44]  A. Bandrauk,et al.  Laser-phase directional control of photofragments in dissociative ionization of H + 2 using two-color intense laser pulses , 2001 .

[45]  A. Bandrauk,et al.  Laser-induced processes during the Coulomb explosion of H 2 in a Ti-sapphire laser pulse , 1998 .

[46]  M. Lewenstein,et al.  TEMPORAL AND SPECTRAL TAILORING OF HIGH-ORDER HARMONICS , 1998 .

[47]  S. Mukamel,et al.  Electronic coherence and collective optical excitations of conjugated molecules , 1997 .

[48]  Kulander Time-dependent Hartree-Fock theory of multiphoton ionization: Helium. , 1987, Physical review. A, General physics.

[49]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[50]  A. L’Huillier,et al.  Theoretical aspects of intense field harmonic generation , 1991 .

[51]  D. Micha TIME-DEPENDENT MANY-ELECTRON TREATMENT OF ELECTRONIC ENERGY AND CHARGE TRANSFER IN ATOMIC COLLISIONS , 1999 .

[52]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[53]  H. Schlegel,et al.  Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields , 2004 .

[54]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[55]  R. Levis,et al.  Observing the Transition from a Multiphoton-Dominated to a Field-Mediated Ionization Process for Polyatomic Molecules in Intense Laser Fields , 1998 .

[56]  D. Micha Time‐evolution of multiconfiguration density functions driven by nuclear motions , 1996 .

[57]  R. Bartlett,et al.  New algorithm for high‐order time‐dependent hartree–fock theory for nonlinear optical properties , 1992 .

[58]  Hideo Sekino,et al.  Frequency dependent nonlinear optical properties of molecules , 1986 .

[59]  H. Kono,et al.  Intense laser-field ionization of H 2 enhanced by two-electron dynamics , 2002 .

[60]  P. Thomann,et al.  Stimulated absorption and emission of strong monchromatic radiation by a two-level atom , 1976 .

[61]  Stephen K. Gray,et al.  Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods , 1994 .

[62]  B. Carré,et al.  Theory of high-order harmonic generation by an elliptically polarized laser field. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[63]  A. Bandrauk,et al.  Molecules in intense laser fields: Enhanced ionization in a one-dimensional model of H2. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[64]  S. Mukamel,et al.  Reduced electronic density matrices, effective Hamiltonians, and nonlinear susceptibilities of conjugated polyenes , 1995 .

[65]  R. Levis,et al.  Coulomb explosion of large polyatomic molecules assisted by nonadiabatic charge localization. , 2004, Physical review letters.

[66]  P. Bucksbaum,et al.  Ionization and dissociation of H 2 in intense laser fields at 1.064 μm, 532 nm, and 355 nm , 1990 .

[67]  H. Kono,et al.  Mechanism of enhanced ionization of linear H + 3 in intense laser fields , 2001 .

[68]  F. Pipkin,et al.  CORRIGENDUM: Interaction of a decaying atom with a linearly polarized oscillating field , 1972 .

[69]  J. Hirschfelder,et al.  Time-dependent perturbation of a two-state quantum system by a sinusoidal field , 1976 .

[70]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[71]  Schumacher,et al.  Above-threshold ionization with subpicosecond laser pulses. , 1987, Physical review letters.

[72]  Sergei Tretiak,et al.  Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. , 2002, Chemical reviews.

[73]  M. Gruebele,et al.  Shifted-update rotation: simple integration of the many-level Schrödinger equation to long times , 1995 .

[74]  R. McLachlan,et al.  Equivariant constrained symplectic integration , 1995 .

[75]  J. Light,et al.  Quantum‐mechanical calculations of the dissociation of H3 Rydberg states , 1992 .

[76]  M. Walker,et al.  Detailed comparison of above-threshold-ionization spectra from accurate numerical integrations and high-resolution measurements , 1999 .

[77]  M. Ivanov,et al.  A semiclassical approach to intense-field above-threshold dissociation in the long wavelength limit. II. Conservation principles and coherence in surface hopping , 1998 .

[78]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[79]  A. Bandrauk,et al.  HIGH-ORDER HARMONIC GENERATION IN INTENSE LASER AND MAGNETIC FIELDS , 1995 .

[80]  A. Bandrauk,et al.  Enhanced ionization of the molecular ionH2+in intense laser and static magnetic fields , 2000 .

[81]  S. Mukamel,et al.  Effective Hamiltonian for conjugated polyenes based on the ground state single-electron density matrix , 1996 .

[82]  Kulander Multiphoton ionization of hydrogen: A time-dependent theory. , 1987, Physical review. A, General physics.

[83]  Jun-qiang Sun,et al.  Quadratic steepest descent on potential energy surfaces. I. Basic formalism and quantitative assessment , 1993 .

[84]  André D. Bandrauk,et al.  Molecules in Laser Fields , 1995 .

[85]  K. Kulander,et al.  Wave packet studies of predissociation in H3 Rydberg states , 1989 .

[86]  A. Conjusteau,et al.  Dissociative ionization of H2 + in an intense laser field: Charge-resonance-enhanced ionization, Coulomb explosion, and harmonic generation at 600 nm. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[87]  Ivanov,et al.  Role of electron localization in intense-field molecular ionization. , 1995, Physical review letters.

[88]  M. Schmidt,et al.  Coulomb explosion of CO2 in an intense femtosecond laser field , 1994 .