An Efficient Dissipation-Preserving Numerical Scheme to Solve a Caputo–Riesz Time-Space-Fractional Nonlinear Wave Equation

For the first time, a new dissipation-preserving scheme is proposed and analyzed to solve a Caputo–Riesz time-space-fractional multidimensional nonlinear wave equation with generalized potential. We consider initial conditions and impose homogeneous Dirichlet data on the boundary of a bounded hyper cube. We introduce an energy-type functional and prove that the new mathematical model obeys a conservation law. Motivated by these facts, we propose a finite-difference scheme to approximate the solutions of the continuous model. A discrete form of the continuous energy is proposed and the discrete operator is shown to satisfy a conservation law, in agreement with its continuous counterpart. We employ a fixed-point theorem to establish theoretically the existence of solutions and study analytically the numerical properties of consistency, stability and convergence. We carry out a number of numerical simulations to verify the validity of our theoretical results.

[1]  M. Ortigueira A New Look at the Initial Condition Problem , 2022, Mathematics.

[2]  Adán J. Serna-Reyes,et al.  Theoretical analysis of a conservative finite-difference scheme to solve a Riesz space-fractional Gross-Pitaevskii system , 2021, J. Comput. Appl. Math..

[3]  M. Ortigueira An Entropy Paradox Free Fractional Diffusion Equation , 2021, Fractal and Fractional.

[4]  J.A. Tenreiro Machado,et al.  An optimization technique for solving a class of nonlinear fractional optimal control problems: Application in cancer treatment , 2021, Applied Mathematical Modelling.

[5]  Manuel Duarte Ortigueira,et al.  Bilateral Tempered Fractional Derivatives , 2021, Symmetry.

[6]  Zhichao Fang,et al.  Mixed finite element algorithm for a nonlinear time fractional wave model , 2021, Math. Comput. Simul..

[7]  D. Baleanu,et al.  Caputo SIR model for COVID-19 under optimized fractional order , 2020, Advances in difference equations.

[8]  Francielle Santo Pedro,et al.  The memory effect on fractional calculus: an application in the spread of COVID-19 , 2020, Computational and Applied Mathematics.

[9]  Dongyang Shi,et al.  Two efficient spectral methods for the nonlinear fractional wave equation in unbounded domain , 2021, Math. Comput. Simul..

[10]  A. Bountis,et al.  Nonlinear Supratransmission in Quartic Hamiltonian Lattices With Globally Interacting Particles and On-Site Potentials , 2021 .

[11]  A. Hendy,et al.  A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation , 2020, Mathematics.

[12]  Hari M. Srivastava,et al.  An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model , 2020 .

[13]  J. Macías-Díaz,et al.  An energy-preserving and efficient scheme for a double-fractional conservative Klein–Gordon–Zakharov system , 2020 .

[14]  S. Qureshi Real life application of Caputo fractional derivative for measles epidemiological autonomous dynamical system , 2020 .

[15]  J. Macías-Díaz Existence of solutions of an explicit energy-conserving scheme for a fractional Klein–Gordon–Zakharov system , 2020 .

[16]  Mohammed Elamine Sebih,et al.  Fractional Klein-Gordon equation with singular mass , 2020, 2004.10145.

[17]  Yue Shen,et al.  A periodic solution of the fractional sine-Gordon equation arising in architectural engineering , 2020 .

[18]  Behzad Ghanbari,et al.  A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing , 2020 .

[19]  Necati Özdemir,et al.  Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel , 2020, Discrete & Continuous Dynamical Systems - S.

[20]  M. Inç,et al.  Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data , 2019, Physica A: Statistical Mechanics and its Applications.

[21]  Meng Li,et al.  Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation , 2019, Numerical Algorithms.

[22]  R. Mittal,et al.  A Numerical Algorithm to Capture Spin Patterns of Fractional Bloch Nuclear Magnetic Resonance Flow Models , 2019, Journal of Computational and Nonlinear Dynamics.

[23]  Jinrong Wang,et al.  The Application of Fractional Calculus in Chinese Economic Growth Models , 2019, Mathematics.

[24]  M. Ortigueira Two‐sided and regularised Riesz‐Feller derivatives , 2019, Mathematical Methods in the Applied Sciences.

[25]  Jun-jie Wang,et al.  Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrödinger equations , 2019, Appl. Math. Comput..

[26]  Jorge Eduardo Macías-Díaz,et al.  On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme , 2019, Int. J. Comput. Math..

[27]  Dumitru Baleanu,et al.  Fractional modeling of blood ethanol concentration system with real data application. , 2019, Chaos.

[28]  Jorge Eduardo Macías-Díaz,et al.  Supratransmission in β-Fermi-Pasta-Ulam chains with different ranges of interactions , 2018, Commun. Nonlinear Sci. Numer. Simul..

[29]  K. Saad,et al.  New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations , 2018 .

[30]  Ram Jiwari,et al.  A numerical algorithm for computation modelling of 3D nonlinear wave equations based on exponential modified cubic B-spline differential quadrature method , 2018, Int. J. Comput. Math..

[31]  A. Bountis,et al.  The effect of long-range interactions on the dynamics and statistics of 1D Hamiltonian lattices with on-site potential , 2018, The European Physical Journal Special Topics.

[32]  Devendra Kumar,et al.  A fractional epidemiological model for computer viruses pertaining to a new fractional derivative , 2018, Appl. Math. Comput..

[33]  Yanzhi Zhang,et al.  Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation , 2016, Comput. Math. Appl..

[34]  Vasily E. Tarasov,et al.  Elasticity for economic processes with memory: Fractional differential calculus approach , 2016 .

[35]  Chengming Huang,et al.  An energy conservative difference scheme for the nonlinear fractional Schrödinger equations , 2015, J. Comput. Phys..

[36]  Bangti Jin,et al.  An analysis of the L1 Scheme for the subdiffusion equation with nonsmooth data , 2015, 1501.00253.

[37]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[38]  W. D. Bastos,et al.  Energy decay for the linear Klein-Gordon equation and boundary control , 2014 .

[39]  M. Caputo The role of memory in modeling social and economic cycles of extreme events , 2014 .

[40]  W. Deng,et al.  Second order finite difference approximations for the two-dimensional time-space Caputo-Riesz fractional diffusion equation , 2012, 1207.2012.

[41]  Igor Podlubny,et al.  Modeling of the national economies in state-space: A fractional calculus approach , 2012 .

[42]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[43]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[44]  Fawang Liu,et al.  Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation , 2011, Numerical Algorithms.

[45]  Om P. Agrawal,et al.  Riesz Fractional Derivatives and Fractional Dimensional Space , 2010 .

[46]  Jorge Eduardo Macías-Díaz,et al.  An implicit four-step computational method in the study on the effects of damping in a modified α -Fermi-Pasta-Ulam medium , 2009 .

[47]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[48]  G. Zaslavsky,et al.  Fractional dynamics of systems with long-range interaction , 2006, 1107.5436.

[49]  V. E. Tarasov Continuous limit of discrete systems with long-range interaction , 2006, 0711.0826.

[50]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[51]  Constantine A. Popov,et al.  Perturbation theory for the double sine-Gordon equation , 2003, nlin/0312054.

[52]  Felix E. Browder,et al.  Existence and uniqueness theorems for solutions of nonlinear boundary value problems , 1965 .