The Lie–Trotter splitting method for nonlinear evolutionary problems involving critical parameters. An exact local error representation and application to nonlinear Schrödinger equations in the semi-classical regime

In the present work, we investigate the error behaviour of exponential operator splitting methods for nonlinear evolutionary problems of the form u ′(t) = A ( u(t) ) +B ( u(t) ) , 0≤ t ≤ T , u(0) given . In particular, our concern is to deduce an exact local error representation that is suitable in the presence of critical parameters. Essential tools in the theoretical analysis including time-dependent nonlinear Schrödinger equations in the semi-classical regime as well as parabolic initial-boundary value problems with high spatial gradients are an abstract formulation of differential equations on function spaces and the formal calculus of Lie-derivatives. We expose the general mechanism on the basis of the least technical example method, the first-order Lie–Trotter splitting. Our conjecture that exponential operator splitting methods are favourable for the time integration of a nonlinear Schrödinger equation in the semi-classical regime, provided that the time stepsizes are suitably chosen in dependence of the magnitude of the critical parameter 0 < ε << 1, is confirmed by a numerical example for the time-dependent Gross–Pitaevskii equation iε ∂ tψ(x, t) =− 2 ε 2∆ ψ(x, t)+U(x)ψ(x, t)+θ ∣∣ψ(x, t)∣∣2 ψ(x, t) , ψ(x,0) given , x ∈ Rd , 0≤ t ≤ T , and substantiated by theoretical considerations for the Lie–Trotter splitting method. Moreover, we illustrate the ability of an embedded 4(3) splitting pair to serve as a reliable basis for a local error control. Stéphane Descombes, Laboratoire J. A. Dieudonné, Université de Nice – Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 02, France. E-mail: sdescomb@unice.fr Mechthild Thalhammer, Institut für Mathematik, Leopold–Franzens Universität Innsbruck, Technikerstraße 13/7, 6020 Innsbruck, Austria. E-mail: mechthild.thalhammer@uibk.ac.at 2 Stéphane Descombes, Mechthild Thalhammer

[1]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[2]  A. Yagi Linear Evolution Equations , 2010 .

[3]  Stéphane Descombes,et al.  Strang's formula for holomorphic semi-groups , 2002 .

[4]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[5]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[6]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[7]  Christian Lubich,et al.  On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..

[8]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[9]  O. Koch,et al.  Embedded Split-Step Formulae for the Time Integration of Nonlinear Evolution Equations , 2010 .

[10]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[11]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[12]  Stéphane Descombes,et al.  On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients , 2007, Int. J. Comput. Math..

[13]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[14]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[15]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[16]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[17]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[18]  V. Thomée Semilinear Parabolic Equations , 2006 .

[19]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[20]  Mechthild Thalhammer,et al.  High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..

[21]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[22]  Jie Shen,et al.  A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..

[23]  Víctor M. Pérez-García,et al.  Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..

[24]  M. Thalhammer,et al.  On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential , 2009 .

[25]  H. Trotter On the product of semi-groups of operators , 1959 .

[26]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[27]  L. Gauckler,et al.  Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .

[28]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[29]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[30]  S. Descombes,et al.  An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .