The Lie–Trotter splitting method for nonlinear evolutionary problems involving critical parameters. An exact local error representation and application to nonlinear Schrödinger equations in the semi-classical regime
暂无分享,去创建一个
[1] C. Lubich,et al. Error Bounds for Exponential Operator Splittings , 2000 .
[2] A. Yagi. Linear Evolution Equations , 2010 .
[3] Stéphane Descombes,et al. Strang's formula for holomorphic semi-groups , 2002 .
[4] E. Gross. Structure of a quantized vortex in boson systems , 1961 .
[5] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[6] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[7] Christian Lubich,et al. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations , 2008, Math. Comput..
[8] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[9] O. Koch,et al. Embedded Split-Step Formulae for the Time Integration of Nonlinear Evolution Equations , 2010 .
[10] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[11] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[12] Stéphane Descombes,et al. On the local and global errors of splitting approximations of reaction–diffusion equations with high spatial gradients , 2007, Int. J. Comput. Math..
[13] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[14] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[15] Shi Jin,et al. Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..
[16] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[17] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[18] V. Thomée. Semilinear Parabolic Equations , 2006 .
[19] A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .
[20] Mechthild Thalhammer,et al. High-Order Exponential Operator Splitting Methods for Time-Dependent Schrödinger Equations , 2008, SIAM J. Numer. Anal..
[21] Mechthild Thalhammer,et al. High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..
[22] Jie Shen,et al. A Fourth-Order Time-Splitting Laguerre-Hermite Pseudospectral Method for Bose-Einstein Condensates , 2005, SIAM J. Sci. Comput..
[23] Víctor M. Pérez-García,et al. Numerical methods for the simulation of trapped nonlinear Schrödinger systems , 2003, Appl. Math. Comput..
[24] M. Thalhammer,et al. On the convergence of splitting methods for linear evolutionary Schrödinger equations involving an unbounded potential , 2009 .
[25] H. Trotter. On the product of semi-groups of operators , 1959 .
[26] R. G. Cooke. Functional Analysis and Semi-Groups , 1949, Nature.
[27] L. Gauckler,et al. Convergence of a split-step Hermite method for the Gross–Pitaevskii equation , 2011 .
[28] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[29] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[30] S. Descombes,et al. An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime , 2010 .