Pivotal role of the strictly conserved aromatic residue F15 in the cytochrome c7 family

[1]  N. Duke,et al.  Structure of a novel dodecaheme cytochrome c from Geobacter sulfurreducens reveals an extended 12 nm protein with interacting hemes. , 2011, Journal of structural biology.

[2]  R. Louro,et al.  Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR , 2010, FEBS letters.

[3]  M. Bruix,et al.  Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. , 2010, Biophysical journal.

[4]  N. Duke,et al.  Structural characterization of a family of cytochromes c(7) involved in Fe(III) respiration by Geobacter sulfurreducens. , 2010, Biochimica et biophysica acta.

[5]  Bruno M. Fonseca,et al.  The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes , 2009, JBIC Journal of Biological Inorganic Chemistry.

[6]  N. Duke,et al.  Structural insights into the modulation of the redox properties of two Geobacter sulfurreducens homologous triheme cytochromes. , 2008, Biochimica et biophysica acta.

[7]  I. Couto,et al.  Isotopic labeling of c-type multiheme cytochromes overexpressed in E. coli. , 2008, Protein expression and purification.

[8]  Laurie N. DiDonato,et al.  Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens , 2007, BMC Microbiology.

[9]  Jagjit S Ludu,et al.  The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth , 2007, BMC Microbiology.

[10]  Erisa Harada,et al.  Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. , 2004, Biochemistry.

[11]  M. Schiffer,et al.  Redox characterization of Geobacter sulfurreducens cytochrome c7: physiological relevance of the conserved residue F15 probed by site-specific mutagenesis. , 2004, Biochemistry.

[12]  N. Duke,et al.  Family of cytochrome c7-type proteins from Geobacter sulfurreducens: structure of one cytochrome c7 at 1.45 A resolution. , 2004, Biochemistry.

[13]  C. Soares,et al.  Redox-Bohr and Other Cooperativity Effects in the Nine-heme Cytochrome c from Desulfovibrio desulfuricans ATCC 27774 , 2003, Journal of Biological Chemistry.

[14]  C. Leang,et al.  Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. , 2003, The Biochemical journal.

[15]  I. Correia,et al.  Thermodynamic and kinetic characterization of trihaem cytochrome c3 from Desulfuromonas acetoxidans. , 2002, European journal of biochemistry.

[16]  M. Schiffer,et al.  Production and preliminary characterization of a recombinant triheme cytochrome c(7) from Geobacter sulfurreducens in Escherichia coli. , 2002, Biochimica et biophysica acta.

[17]  M. Saraste,et al.  FEBS Lett , 2000 .

[18]  M. Teodoro,et al.  Correlation of empirical magnetic susceptibility tensors and structure in low-spin haem proteins , 2000, European Biophysics Journal.

[19]  V. Lobachov,et al.  Key role of phenylalanine 20 in cytochrome c3: structure, stability, and function studies. , 1999, Biochemistry.

[20]  I. Correia,et al.  ELECTRONIC STRUCTURE OF LOW-SPIN FERRIC PORPHYRINS : 13C NMR STUDIES OF THE INFLUENCE OF AXIAL LIGAND ORIENTATION , 1998 .

[21]  Rachel Zufferey,et al.  Overproduction of theBradyrhizobium japonicum c-Type Cytochrome Subunits of thecbb3Oxidase inEscherichia coli , 1998 .

[22]  F. Walker,et al.  Co- and Counterrotation of Magnetic Axes and Axial Ligands in Low-Spin Ferriheme Systems , 1998 .

[23]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[24]  D. Turner,et al.  Use of paramagnetic NMR probes for structural analysis in cytochrome c3 from Desulfovibrio vulgaris. , 1997, European journal of biochemistry.

[25]  L. M. Saraiva,et al.  Site-directed mutagenesis of a phenylalanine residue strictly conserved in cytochromes c3 , 1996, JBIC Journal of Biological Inorganic Chemistry.

[26]  T. Catarino,et al.  NMR studies of cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. , 1996, European journal of biochemistry.

[27]  Eric Oldfield,et al.  1H, 13C and 15N chemical shift referencing in biomolecular NMR , 1995, Journal of biomolecular NMR.

[28]  D. Turner Determination of Haem Electronic Structure in His‐Met Cytochromes c by 13C‐NMR , 1995 .

[29]  D. Turner Determination of haem electronic structure in His-Met cytochromes c by 13C-NMR. The effect of the axial ligands. , 1995, European journal of biochemistry.

[30]  D. Turner,et al.  Carbon-13 NMR studies of the influence of axial ligand orientation on haem electronic structure. , 1995, Biochimica et biophysica acta.

[31]  H. Santos,et al.  Assignment of the redox potentials to the four haems in Desulfovibrio vulgaris cytochrome c 3 by 2D‐NMR , 1992, FEBS letters.

[32]  H. Santos,et al.  NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3. , 1984, European journal of biochemistry.