Multiobjective Fractional Programming Problems and Second Order Generalized Hybrid Invexity Frameworks

In this paper, first generalized sufficient efficiency conditions for multiobjective fractional programming based on the generalized hybrid   invexities  are developed , and then efficient solutions to multiobjective fractional programming problems are established. The obtained results generalize and unify a wide range of investigations in the literature.

[1]  M. Srivastava,et al.  Symmetric duality for multiobjective programming using second order (F, ρ)-convexity , 2006 .

[2]  G. Lee,et al.  On ε-optimality conditions for multiobjective fractional optimization problems , 2011 .

[4]  G. J. Zalmai,et al.  Global Parametric Sufficient Optimality Conditions for Semi-infinite Discrete Minmax Fractional Programming Problems Involving Generalized (η,ρ)-invex Functions , 2007 .

[5]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[6]  Qamrul Hasan Ansari,et al.  Generalized vector variational-like inequalities and vector optimization , 2012, J. Glob. Optim..

[7]  Second-Order Duality for Nondifferentiable Minimax Programming Involving Generalized Type I Functions , 2006 .

[8]  Kok Lay Teo,et al.  Higher-order generalized convexity and duality in nondifferentiable multiobjective mathematical programming ✩ , 2004 .

[9]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[10]  G. J. Zalmai,et al.  Semiinfinite multiobjective fractional programming, Part I: Sufficient efficiency conditions , 2010 .

[11]  Kok Lay Teo,et al.  Second-order duality for nonlinear programming , 2004 .

[12]  A. Tripathy Second Order Duality in Multiobjective Fractional Programming with Square Root Term under Generalized Univex Function , 2014, International scholarly research notices.

[13]  C. S. Lalitha,et al.  Second order symmetric duality in multiobjective programming , 2003, Eur. J. Oper. Res..

[14]  Kok Lay Teo,et al.  Huard type second-order converse duality for nonlinear programming , 2005, Appl. Math. Lett..

[16]  Adi Ben-Israel,et al.  What is invexity? , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[17]  Kok Lay Teo,et al.  Non-differentiable second order symmetric duality in mathematical programming with F-convexity , 2003, Eur. J. Oper. Res..

[18]  Generalized Invariant Monotonicity and Generalized Invexity of Nondifferentiable Functions , 2009 .

[19]  Olvi L. Mangasarian,et al.  Second- and higher-order duality in nonlinear programming☆ , 1975 .

[20]  B. Mond,et al.  Generalized Convexity and Higher Order Duality of the Non-linear Programming Problem with Non-negative Variables , 1995 .

[21]  Hidefumi Kawasaki,et al.  Second-order necessary conditions of the Kuhn-Tucker type under new constraint qualifications , 1988 .

[22]  Xinmin Yang,et al.  On Second-Order Symmetric Duality in Nondifferentiable Programming , 2001 .

[23]  Ram U. Verma,et al.  Weak ϵ-efficiency conditions for multiobjective fractional programming , 2013, Appl. Math. Comput..

[24]  Shashi Kant Mishra,et al.  Higher-Order Generalized Invexity and Duality in Mathematical Programming☆ , 2000 .

[25]  G. J. Zalmai Global parametric sufficient optimality conditions for discrete minmax fractional programming problems containing generalized (θ, η, ρ)-V-invex functions and arbitrary norms , 2007 .

[26]  Santanu K. Mishra,et al.  Second order symmetric duality in mathematical programming with F-convexity , 2000, Eur. J. Oper. Res..

[27]  B. Mond,et al.  Higher Order Invexity and Duality in Mathematical Programming , 1998 .

[28]  Shashi Kant Mishra Second order generalized invexity and duality in mathematical programming , 1997 .

[29]  Kazunori Yokoyama,et al.  Epsilon Approximate Solutions for Multiobjective Programming Problems , 1996 .

[30]  Jafar Zafarani,et al.  Generalized Invariant Monotonicity and Invexity of Non-differentiable Functions , 2006, J. Glob. Optim..