Derived Azumaya algebras and generators for twisted derived categories

We introduce a notion of derived Azumaya algebras over ring and schemes generalizing the notion of Azumaya algebras of [Gr]. We prove that any such algebra B on a scheme X provides a class φ(B) in H et(X,Z) × H 2 et(X,Gm). We prove that for X a quasi-compact and quasi-separated scheme φ defines a bijective correspondence, and in particular that any class in H et(X,Gm), torsion or not, can be represented by a derived Azumaya algebra on X. Our result is a consequence of a more general theorem about the existence of compact generators in twisted derived categories, with coefficients in any local system of reasonable dg-categories, generalizing the well known existence of compact generators in derived categories of quasi-coherent sheaves of [Bo-Va]. A huge part of this paper concerns the treatment of twisted derived categories, as well as the proof that the existence of compact generator locally for the fppf topology implies the existence of a global compact generator. We present explicit examples of derived Azumaya algebras that are not represented by classical Azumaya algebras, as well as applications of our main result to the localization for twisted algebraic K-theory and to the stability of saturated dg-categories by direct push-forwards along smooth and proper maps.

[1]  Bertrand Toën Descente fidèlement plate pour les n-champs d’Artin , 2011, Compositio Mathematica.

[2]  Carlos T. Simpson,et al.  Homotopy Theory of Higher Categories: THE MODEL STRUCTURE , 2010, 1001.4071.

[3]  Toën Bertrand,et al.  Lectures on DG-Categories , 2011 .

[4]  Rubén J. Sánchez-García,et al.  Topics in Algebraic and Topological K-Theory , 2010 .

[5]  G. Vezzosi ∞-Categories mono¨õdales rigides, traces et caractere de Chern , 2009 .

[6]  B. Toën Higher and derived stacks: a global overview , 2009 .

[7]  Jacob Lurie,et al.  On the Classification of Topological Field Theories , 2009, 0905.0465.

[8]  Bertrand Toën Anneaux de définition des dg‐algèbres propres et lisses , 2008 .

[9]  G. Vezzosi,et al.  Chern Character, Loop Spaces and Derived Algebraic Geometry , 2008, 0804.1274.

[10]  S. Schroeer,et al.  The bigger Brauer group and twisted sheaves , 2008, 0803.3563.

[11]  Gonçalo Tabuada Differential graded versus Simplicial categories , 2007, 0711.3845.

[12]  Gonçalo Tabuada Invariants additifs de dg-catégories , 2005, math/0507227.

[13]  Julia E. Bergner,et al.  THREE MODELS FOR THE HOMOTOPY THEORY OF HOMOTOPY THEORIES , 2005, math/0504334.

[14]  B. Toën,et al.  Moduli of objects in dg-categories , 2005, math/0503269.

[15]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[16]  Goncalo Tabuada Algèbre homologique Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories , 2004, math/0407338.

[17]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[18]  Max Lieblich Moduli of twisted sheaves and generalized Azumaya algebras , 2004 .

[19]  B. Shipley,et al.  Equivalences of monoidal model categories , 2002, math/0209342.

[20]  Bertrand Toen,et al.  Homotopical algebraic geometry. I. Topos theory. , 2002, math/0207028.

[21]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[22]  D. Edidin,et al.  Brauer groups and quotient stacks , 1999, math/9905049.

[23]  C. Rezk,et al.  Fibrations and homotopy colimits of simplicial sheaves , 1998, math/9811038.

[24]  B. Shipley,et al.  Algebras and Modules in Monoidal Model Categories , 1998, math/9801082.

[25]  R. Thomason The classification of triangulated subcategories , 1997, Compositio Mathematica.

[26]  O. Gabber Some theorems on azumaya algebras , 1981 .

[27]  Chern Character , 2022 .