Noether's symmetry theorem for nabla problems of the calculus of variations

Abstract We prove a Noether-type symmetry theorem and a DuBois–Reymond necessary optimality condition for nabla problems of the calculus of variations on time scales.

[1]  Delfim F. M. Torres,et al.  The Second Euler-Lagrange Equation of Variational Calculus on Time Scales , 2011, Eur. J. Control.

[2]  E. M. Elsayed,et al.  DIFFERENCE EQUATIONS , 2001 .

[3]  Delfim F. M. Torres Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations , 2004 .

[4]  Ferhan Merdivenci Atici,et al.  A production-inventory model of HMMS on time scales , 2008, Appl. Math. Lett..

[5]  Agnieszka B. Malinowska,et al.  F a S C I C U L I M a T H E M a T I C I , 2022 .

[6]  Andrey Sarychev Mathematical Control Theory and Finance , 2008 .

[7]  Agnieszka B. Malinowska,et al.  Strong minimizers of the calculus of variations on time scales and the Weierstrass condition , 2009, Proceedings of the Estonian Academy of Sciences.

[8]  Delfim F. M. Torres On the Noether theorem for optimal control , 2001, ECC.

[9]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[10]  Christopher S. McMahan,et al.  A Comparison in the Theory of Calculus of Variations on Time Scales with an Application to the Ramsey Model , 2009 .

[11]  Ewa Girejko,et al.  A unified approach to the calculus of variations on time scales , 2010, 2010 Chinese Control and Decision Conference.

[12]  F. H. Jackson q-Difference Equations , 1910 .

[13]  Delfim F. M. Torres,et al.  Higher-Order Calculus of Variations on Time Scales , 2007, 0706.3141.

[14]  Martin Bohner,et al.  Hamiltonian Systems on Time Scales , 2000 .

[15]  Ravi P. Agarwal,et al.  Dynamic equations on time scales: a survey , 2002 .

[16]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[17]  Agnieszka B. Malinowska,et al.  On the diamond-alpha riemann integral and mean value theorems on time scales , 2008 .

[18]  John M. Davis,et al.  An exploration of combined dynamic derivatives on time scales and their applications , 2006 .

[19]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[20]  M. Cristina Caputo,et al.  Time Scales: From Nabla Calculus to Delta Calculus and Vice Versa via Duality , 2009, 0910.0085.

[21]  Delfim F. M. Torres,et al.  Diamond- Jensen's Inequality on Time Scales , 2007, 0712.1680.

[22]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[23]  Delfim F. M. Torres,et al.  Isoperimetric Problems on Time Scales with Nabla Derivatives , 2008, 0811.3650.

[24]  Agnieszka B. Malinowska,et al.  Necessary and sufficient conditions for local Pareto optimality on time scales , 2008 .

[25]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[26]  Delfim F. M. Torres,et al.  Noether's theorem on time scales , 2008 .

[27]  Gaspard Bangerezako,et al.  Variational q-calculus , 2004 .

[28]  Delfim F. M. Torres,et al.  A formulation of Noether's theorem for fractional problems of the calculus of variations , 2007 .

[29]  Martin Bohner CALCULUS OF VARIATIONS ON TIME SCALES , 2004 .