Overtwisted energy-minimizing curl eigenfields

This paper concerns topological and geometric properties of energy-minimizing solutions to the steady Euler equations for a fluid on a three-dimensional manifold. Specifically, we consider energy-minimizing divergence-free eigenfields of the curl operator in dimension three from the perspective of contact topology. We give a negative answer to a question of Etnyre and the first author by constructing curl eigenfields which minimize L2 energy on their co-adjoint orbit, yet are orthogonal to an overtwisted contact structure. We then show progress towards the conjecture that K-contact structures on Seifert fibred manifolds always define tight minimizers.

[1]  R. Komendarczyk On the contact geometry of nodal sets , 2004, math/0402070.

[2]  David E. Blair,et al.  Riemannian Geometry of Contact and Symplectic Manifolds , 2002 .

[3]  R. Ghrist,et al.  Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture , 2000 .

[4]  Emmanuel Giroux Structures de contact sur les variétés fibrées en cercles au-dessus d'une surface , 1999, math/9911235.

[5]  John B. Etnyre,et al.  Contact Topology and Hydrodynamics , 1997, dg-ga/9708011.

[6]  L. Nicolaescu Adiabatic limits of Seiberg-Witten equations on Seifert manifolds , 1996, dg-ga/9601007.

[7]  Yoshikazu Giga,et al.  Remarks on spectra of operator rot , 1990 .

[8]  Y. Eliashberg Classification of overtwisted contact structures on 3-manifolds , 1989 .

[9]  J. Bourguignon,et al.  Laplacians and Riemannian submersions with totally geodesic fibres , 1982 .

[10]  C. Chicone The topology of stationary curl parallel solutions of Euler’s equations , 1981 .

[11]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[12]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[13]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .

[14]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[15]  S. Chern,et al.  On riemannian metrics adapted to three-dimensional contact manifolds , 1985 .

[16]  S. Chandrasekhar,et al.  ON FORCE-FREE MAGNETIC FIELDS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.