Bipartite bithreshold graphs

Abstract A bithreshold graph G is the intersection of two threshold graphs T 1 and T 2 on the same vertex set such that every stable set of G is also a stable set of T 1 or T 2 . The complements of bithreshold graphs form an important subclass of the class of graphs of threshold dimension two. The complexity of recognizing the latter class remains open while the former subclass has a known O( n 4 )-recognition algorithm. We show that the vertex set of a bithreshold graph partitions into a clique and a set inducing a bipartite graph. We characterize the class of bipartite bithreshold graphs as the union of five classes of graphs with explicit description and also by eleven forbidden induced subgraphs. We use this to obtain an O( n 2 )-recognition algorithm for bipartite bithreshold graphs.

[1]  Peter L. Hammer,et al.  Some properties of 2-threshold graphs , 1989, Networks.

[2]  David G. Kirkpatrick,et al.  Adequate Requirements for Rational Functions , 1977, SIAM J. Comput..

[3]  Yechezkel Zalcstein,et al.  A Graph-Theoretic Characterization of the PV_chunk Class of Synchronizing Primitives , 1977, SIAM J. Comput..

[4]  Uri N. Peled,et al.  Enumeration of labelled threshold graphs and a theorem of frobenius involving eulerian polynomials , 1987, Graphs Comb..

[5]  Nadimpalli V. R. Mahadev,et al.  Strict 2-threshold graphs , 1988, Discret. Appl. Math..

[6]  F. Harary,et al.  Hamiltonian threshold graphs , 1987, Discret. Appl. Math..

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  M. Koren Extreme degree sequences of simple graphs , 1973 .

[9]  Toshihide Ibaraki,et al.  Threshold Numbers and Threshold Completions , 1981 .

[10]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[11]  Peter L. Hammer,et al.  Threshold characterization of graphs with dilworth number two , 1985, J. Graph Theory.

[12]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[13]  Jeremy P. Spinrad,et al.  Incremental modular decomposition , 1989, JACM.

[14]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[15]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[16]  T. Ibaraki,et al.  Sufficient Conditions for Graphs to Have Threshold Number 2 , 1981 .

[17]  Margaret B. Cozzens,et al.  Multidimensional scaling and threshold graphs , 1987 .

[18]  Dominique de Werra,et al.  Four classes of perfectly orderable graphs , 1987, J. Graph Theory.

[19]  U. Peled,et al.  The polytope of degree sequences , 1989 .

[20]  P. Hammer,et al.  Split Graphs Having Dilworth Number Two , 1977, Canadian Journal of Mathematics.

[21]  J. Orlin The Minimal Integral Separator of A Threshold Graph , 1977 .

[22]  Margaret B. Cozzens,et al.  Threshold Dimension of Graphs , 1984 .

[23]  Olivier Cogis,et al.  Ferrers digraphs and threshold graphs , 1982, Discret. Math..