A saddle-point characterization of Pareto optima

This paper provides an answer to the following basic problem of convex multi-objective optimization: Find a saddle-point condition that is both necessary and sufficient that a given point be Pareto optimal. No regularity condition is assumed for the constraints or the objectives.

[1]  S. Zlobec,et al.  Characterizing optimality in mathematical programming models , 1988 .

[2]  S. Smale,et al.  Global analysis and economics III: Pareto Optima and price equilibria , 1974 .

[3]  Sanjo Zlobec,et al.  A simple constraint qualification in convex programming , 1993, Math. Program..

[4]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[5]  Abraham Charnes,et al.  Necessary and Sufficient Conditions for a Pareto Optimum in Convex Programming , 1977 .

[6]  Aharon Ben-Tal,et al.  Optimality in nonlinear programming: A feasible directions approach , 1981 .

[7]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[8]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[9]  A. Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[10]  John Casti,et al.  Vector-valued optimization problems in control theory , 1979 .

[11]  G. Debreu Theory of value : an axiomatic analysis of economic equilibrium , 1960 .

[12]  S. Smale Global analysis and economics VI: Geometric analysis of Pareto Optima and price equilibria under classical hypotheses , 1976 .

[13]  Sanjo Zlobec Two characterizations of Pareto minima in convex multicriteria optimization , 1984 .

[14]  L. Kerzner,et al.  A simplified test for optimality , 1978 .

[15]  T. L. Vincent,et al.  Optimality in parametric systems , 1981 .

[16]  I. Váyi Approximate saddle-point theorems in vector optimization , 1987 .

[17]  K. Arrow An Extension of the Basic Theorems of Classical Welfare Economics , 1951 .