Library of Apicomplexan Metabolic Pathways: a manually curated database for metabolic pathways of apicomplexan parasites

The Library of Apicomplexan Metabolic Pathways (LAMP, http://www.llamp.net) is a web database that provides near complete mapping from genes to the central metabolic functions for some of the prominent intracellular parasites of the phylum Apicomplexa. This phylum includes the causative agents of malaria, toxoplasmosis and theileriosis—diseases with a huge economic and social impact. A number of apicomplexan genomes have been sequenced, but the accurate annotation of gene function remains challenging. We have adopted an approach called metabolic reconstruction, in which genes are systematically assigned to functions within pathways/networks for Toxoplasma gondii, Neospora caninum, Cryptosporidium and Theileria species, and Babesia bovis. Several functions missing from pathways have been identified, where the corresponding gene for an essential process appears to be absent from the current genome annotation. For each species, LAMP contains interactive diagrams of each pathway, hyperlinked to external resources and annotated with detailed information, including the sources of evidence used. We have also developed a section to highlight the overall metabolic capabilities of each species, such as the ability to synthesize or the dependence on the host for a particular metabolite. We expect this new database will become a valuable resource for fundamental and applied research on the Apicomplexa.

[1]  Jonathan Crabtree,et al.  Comparative genomics of the neglected human malaria parasite Plasmodium vivax , 2008, Nature.

[2]  Neil Hall,et al.  The genome of model malaria parasites, and comparative genomics. , 2005, Current issues in molecular biology.

[3]  Eileen Kraemer,et al.  PlasmoDB: a functional genomic database for malaria parasites , 2008, Nucleic Acids Res..

[4]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[5]  David S. Roos,et al.  Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy , 2012, PLoS pathogens.

[6]  Neil Hall,et al.  Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T. parva , 2005, Science.

[7]  Haiming Wang,et al.  ToxoDB: an integrated Toxoplasma gondii database resource , 2007, Nucleic Acids Res..

[8]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[9]  John W. Pinney,et al.  A Unique Dual Activity Amino Acid Hydroxylase in Toxoplasma gondii , 2009, PloS one.

[10]  J. Wastling,et al.  Towards evaluating the economic impact of bovine neosporosis. , 1999, International journal for parasitology.

[11]  Keith A Joiner,et al.  Selective Disruption of Phosphatidylcholine Metabolism of the Intracellular Parasite Toxoplasma gondii Arrests Its Growth* , 2005, Journal of Biological Chemistry.

[12]  F. Delsuc,et al.  The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  John Parkinson,et al.  Post-genomics resources and tools for studying apicomplexan metabolism. , 2011, Trends in parasitology.

[14]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[15]  Karsten M. Borgwardt,et al.  The genome of the simian and human malaria parasite Plasmodium knowlesi , 2008, Nature.

[16]  Kellen L. Olszewski,et al.  Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network , 2010, Molecular systems biology.

[17]  H. Ginsburg Progress in in silico functional genomics: the malaria Metabolic Pathways database. , 2006, Trends in parasitology.

[18]  Suzanne M. Paley,et al.  Integrated pathway/genome databases and their role in drug discovery , 1999 .

[19]  H. Ginsburg Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium. , 2009, Trends in parasitology.

[20]  Shelby L. Bidwell,et al.  Genome Sequence of Babesia bovis and Comparative Analysis of Apicomplexan Hemoprotozoa , 2007, PLoS pathogens.

[21]  Amos Bairoch,et al.  The ENZYME database in 2000 , 2000, Nucleic Acids Res..

[22]  Philippa Rhodes,et al.  CryptoDB: a Cryptosporidium bioinformatics resource update , 2005, Nucleic Acids Res..

[23]  Gregory A. Buck,et al.  The genome of Cryptosporidium hominis , 2004, Nature.

[24]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[25]  J. M. Olwocha,et al.  Climate change and the tick-borne disease , Theileriosis ( East Coast fever ) in sub-Saharan Africa , 2007 .

[26]  Balázs Papp,et al.  Metabolic reconstruction and analysis for parasite genomes. , 2007, Trends in Parasitology.

[27]  Peter D. Karp,et al.  Integrated Access to Metabolic and Genomic Data , 1996, J. Comput. Biol..

[28]  Andreas Hoppe,et al.  Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis , 2010, BMC Systems Biology.

[29]  Sarah A Teichmann,et al.  Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum. , 2003, Genome research.

[30]  Jonathan E. Allen,et al.  Genome Sequence of Theileria parva, a Bovine Pathogen That Transforms Lymphocytes , 2005, Science.

[31]  Ziheng Yang,et al.  The Timetree of Life , 2010 .

[32]  Organização Mundial de Saúde,et al.  World malaria report 2011 , 2011 .

[33]  Weltgesundheitsorganisation World malaria report , 2005 .

[34]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[35]  Eileen Kraemer,et al.  EuPathDB: a portal to eukaryotic pathogen databases , 2009, Nucleic Acids Res..

[36]  Joel Dudley,et al.  TimeTree: a public knowledge-base of divergence times among organisms , 2006, Bioinform..

[37]  Sudhir Kumar,et al.  The timetree of life , 2009 .

[38]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[39]  H. Lichtenthaler,et al.  Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. , 1999, Science.

[40]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[41]  Ivica Letunic,et al.  metaTIGER: a metabolic evolution resource , 2008, Nucleic Acids Res..

[42]  Joachim Schachtner,et al.  Toxoplasma gondii scavenges host‐derived lipoic acid despite its de novo synthesis in the apicoplast , 2006, The EMBO journal.

[43]  Haiming Wang,et al.  GeneDB—an annotation database for pathogens , 2011, Nucleic Acids Res..

[44]  Peter D. Karp,et al.  EcoCyc: a comprehensive database of Escherichia coli biology , 2010, Nucleic Acids Res..