Coordinating views for data visualisation and algorithmic profiling

A number of researchers have designed visualisation systems that consist of multiple components, through which data and interaction commands flow. Such multistage (hybrid) models can be used to reduce algorithmic complexity, and to open up intermediate stages of algorithms for inspection and steering. In this paper, we present work on aiding the developer and the user of such algorithms through the application of interactive visualisation techniques. We present a set of tools designed to profile the performance of other visualisation components, and provide further functionality for the exploration of high dimensional data sets. Case studies are provided, illustrating the application of the profiling modules to a number of data sets. Through this work we are exploring ways in which techniques traditionally used to prepare for visualisation runs, and to retrospectively analyse them, can find new uses within the context of a multi-component visualisation system.

[1]  Matthew Chalmers,et al.  A Visual Workspace for Constructing Hybrid Multidimensional Scaling Algorithms and Coordinating Multiple Views , 2003, Inf. Vis..

[2]  Jonathan D. Cohen,et al.  Drawing graphs to convey proximity: an incremental arrangement method , 1997, TCHI.

[3]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[4]  Samuel Kaski,et al.  Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..

[5]  Chris North,et al.  Snap-together visualization: can users construct and operate coordinated visualizations? , 2000, Int. J. Hum. Comput. Stud..

[6]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[7]  Jonathan C. Roberts,et al.  Proceedings of the 4th International Conference on Coordinated & Multiple Views in Exploratory Visualization , 2006 .

[8]  Chris North,et al.  Visualization Schemas and a Web-Based Architecture for Custom Multiple-View Visualization of Multiple-Table Databases , 2002, Inf. Vis..

[9]  Paul E. Haeberli,et al.  ConMan: a visual programming language for interactive graphics , 1988, SIGGRAPH.

[10]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[11]  Matthew Chalmers,et al.  Improving hybrid MDS with pivot-based searching , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[12]  Mu-Chun Su,et al.  Fast self-organizing feature map algorithm , 2000, IEEE Trans. Neural Networks Learn. Syst..

[13]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[14]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[15]  David H. Laidlaw,et al.  The application visualization system: a computational environment for scientific visualization , 1989, IEEE Computer Graphics and Applications.

[16]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[17]  E. Aronson,et al.  Theory and method , 1985 .

[18]  Andreas Buja,et al.  Visualization Methodology for Multidimensional Scaling , 2002, J. Classif..

[19]  Matthew Chalmers,et al.  A Pivot-Based Routine for Improved Parent-Finding in Hybrid MDS† , 2004, Inf. Vis..

[20]  Matthew Chalmers,et al.  Fast Multidimensional Scaling Through Sampling, Springs and Interpolation , 2003, Inf. Vis..

[21]  Peter J. Rodgers,et al.  A Model and Software System for Coordinated and Multiple Views in Exploratory Visualization , 2003, Inf. Vis..

[22]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[23]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[24]  Dominique Brodbeck,et al.  Combining topological clustering and multidimensional scaling for visualizing large data sets , 1998 .

[25]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[26]  Matthew Chalmers,et al.  A linear iteration time layout algorithm for visualising high-dimensional data , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[27]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .