Adaptive multi-cue tracking by online appearance learning

This paper proposes a multi-cue based appearance learning algorithm for object tracking. In each frame, the target object is represented by different cues in the image-as-matrix form. This representation can describe the target from different perspectives and can preserve the spatial correlation information inside the target region. Based on these cues, multiple appearance models are learned online by bilinear subspace analysis to account for the target appearance variations over time. Tracking is formulated within the Bayesian inference framework, in which the observation model is constructed by fusing all the learned appearance models. The combination of online appearance modeling and weight update of each appearance model can adapt our tracking algorithm to both the target and background changes. We test our algorithm on a variety of challenging sequences by tracking car, face, pedestrian, and so on. Experimental results and comparisons to several state-of-the-art methods show improved tracking performance.

[1]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Matthew Brand,et al.  Incremental Singular Value Decomposition of Uncertain Data with Missing Values , 2002, ECCV.

[3]  Haiping Lu,et al.  MPCA: Multilinear Principal Component Analysis of Tensor Objects , 2008, IEEE Transactions on Neural Networks.

[4]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jochen Triesch,et al.  Democratic Integration: Self-Organized Integration of Adaptive Cues , 2001, Neural Computation.

[6]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[8]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[9]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[10]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Ahmed M. Elgammal,et al.  Boosting adaptive linear weak classifiers for online learning and tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  D. Kriegman,et al.  Visual tracking using learned linear subspaces , 2004, CVPR 2004.

[13]  Ming-Hsuan Yang,et al.  Adaptive Probabilistic Visual Tracking with Incremental Subspace Update , 2004, ECCV.

[14]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[15]  David J. Kriegman,et al.  Online learning of probabilistic appearance manifolds for video-based recognition and tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Emilio Maggio,et al.  Combining Colour and Orientation for Adaptive Particle Filter-based Tracking , 2005, BMVC.

[17]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[18]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Xiaoqin Zhang,et al.  Visual tracking via incremental Log-Euclidean Riemannian subspace learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[22]  Kevin Nickels,et al.  Estimating uncertainty in SSD-based feature tracking , 2002, Image Vis. Comput..

[23]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[25]  Stanley T. Birchfield,et al.  Elliptical head tracking using intensity gradients and color histograms , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[26]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[28]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[30]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[31]  James J. Little,et al.  Simultaneous Tracking and Action Recognition using the PCA-HOG Descriptor , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).