Computational brittle fracture using smooth particle hydrodynamics

We are developing statistically based, brittle-fracture models and are implementing them into hydrocodes that can be used for designing systems with components of ceramics, glass, and/or other brittle materials. Because of the advantages it has simulating fracture, we are working primarily with the smooth particle hydrodynamics code SPBM. We describe a new brittle fracture model that we have implemented into SPBM. To illustrate the code`s current capability, we have simulated a number of experiments. We discuss three of these simulations in this paper. The first experiment consists of a brittle steel sphere impacting a plate. The experimental sphere fragment patterns are compared to the calculations. The second experiment is a steel flyer plate in which the recovered steel target crack patterns are compared to the calculated crack patterns. We also briefly describe a simulation of a tungsten rod impacting a heavily confined alumina target, which has been recently reported on in detail.