Advances and challenges in lithium-air batteries

[1]  Yunhui Huang,et al.  Objectively Evaluating the Cathode Performance of Lithium‐Oxygen Batteries , 2017 .

[2]  Jun Chen,et al.  Mechanistic Evolution of Aprotic Lithium‐Oxygen Batteries , 2017 .

[3]  Ziyang Guo,et al.  A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. , 2017, Angewandte Chemie.

[4]  Wen-Hau Zhang,et al.  A High‐Performance Li–O2 Battery with a Strongly Solvating Hexamethylphosphoramide Electrolyte and a LiPON‐Protected Lithium Anode , 2017, Advanced materials.

[5]  Z. Y. Liu,et al.  Decomposing lithium carbonate with a mobile catalyst , 2017 .

[6]  Forrest S. Gittleson,et al.  Oxygen solubility and transport in Li–air battery electrolytes: establishing criteria and strategies for electrolyte design , 2017 .

[7]  Xiulei Ji,et al.  NASICON‐Structured Materials for Energy Storage , 2017, Advanced materials.

[8]  Ping He,et al.  Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries , 2017 .

[9]  David P. Wilkinson,et al.  Recent advances in all-solid-state rechargeable lithium batteries , 2017 .

[10]  Jianming Zheng,et al.  Complete Decomposition of Li2CO3 in Li-O2 Batteries Using Ir/B4C as Noncarbon-Based Oxygen Electrode. , 2017, Nano letters.

[11]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[12]  Dennis Y.C. Leung,et al.  A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance , 2017 .

[13]  Taoran Li,et al.  A polymer lithium–oxygen battery based on semi-polymeric conducting ionomers as the polymer electrolyte , 2016 .

[14]  Jin Yi,et al.  A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety. , 2016, ChemSusChem.

[15]  X. Kong,et al.  Nanosize stabilized Li-deficient Li2−xO2 through cathode architecture for high performance Li-O2 batteries , 2016 .

[16]  P. Mukherjee,et al.  Mechanistic Evaluation of LixOy Formation on δ-MnO2 in Nonaqueous Li-Air Batteries. , 2016, ACS applied materials & interfaces.

[17]  L. Zhuang,et al.  Tuning the Morphology and Crystal Structure of Li2O2: A Graphene Model Electrode Study for Li-O2 Battery. , 2016, ACS applied materials & interfaces.

[18]  Ji-Won Jung,et al.  Recent Progress in 1D Air Electrode Nanomaterials for Enhancing the Performance of Nonaqueous Lithium–Oxygen Batteries , 2016 .

[19]  Wei Shyy,et al.  A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air , 2016 .

[20]  Yusuke Yamauchi,et al.  A Synergistic System for Lithium–Oxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquid‐Based Electrolyte , 2016 .

[21]  Xueliang Sun,et al.  From Lithium‐Oxygen to Lithium‐Air Batteries: Challenges and Opportunities , 2016 .

[22]  Ping He,et al.  Critical Challenges in Rechargeable Aprotic Li–O2 Batteries , 2016 .

[23]  G. Wittstock,et al.  Reactive oxygen species formed in organic lithium-oxygen batteries. , 2016, Physical chemistry chemical physics : PCCP.

[24]  A. Grimaud,et al.  Long-Time and Reliable Gas Monitoring in Li-O2 Batteries via a Swagelok Derived Electrochemical Cell , 2016 .

[25]  Jusef Hassoun,et al.  A gel polymer membrane for lithium-ion oxygen battery , 2016 .

[26]  Y. Park,et al.  CsI as Multifunctional Redox Mediator for Enhanced Li-Air Batteries. , 2016, ACS applied materials & interfaces.

[27]  Huisheng Peng,et al.  High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture. , 2016, Angewandte Chemie.

[28]  Tao Zhang,et al.  Lithium-Air Batteries with Hybrid Electrolytes. , 2016, The journal of physical chemistry letters.

[29]  T. Zhao,et al.  First-Principles Study of Nitrogen-, Boron-Doped Graphene and Co-Doped Graphene as the Potential Catalysts in Nonaqueous Li–O2 Batteries , 2016 .

[30]  Tao Zhang,et al.  A self-defense redox mediator for efficient lithium–O2 batteries , 2016 .

[31]  David W. Rooney,et al.  Enhanced durability of Li-O2 batteries employing vertically standing Ti nanowire array supported cathodes , 2016 .

[32]  Artem R. Oganov,et al.  Synthesis of Borophenes: Anisotropic, Two‐Dimensional Boron Polymorphs. , 2016 .

[33]  Kaixue Wang,et al.  Low‐Overpotential Li–O2 Batteries Based on TFSI Intercalated Co–Ti Layered Double Oxides , 2016 .

[34]  Wei Shyy,et al.  Morphology of the Discharge Product in Non‐aqueous Lithium–Oxygen Batteries: Furrowed Toroid Particles Correspond to a Lower Charge Voltage , 2016 .

[35]  T. Zhao,et al.  MnO 2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries , 2016 .

[36]  Yang-Kook Sun,et al.  Mechanistic Role of Li⁺ Dissociation Level in Aprotic Li-O₂ Battery. , 2016, ACS applied materials & interfaces.

[37]  A. Pearse,et al.  Protocols for Evaluating and Reporting Li-O2 Cell Performance. , 2016, The journal of physical chemistry letters.

[38]  Zhigang Zak Fang,et al.  A lithium–oxygen battery based on lithium superoxide , 2016, Nature.

[39]  T. Zhao,et al.  MnO2-x nanosheets on stainless steel felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries , 2016 .

[40]  Jiujun Zhang,et al.  Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Non-aqueous Lithium-Air Batteries , 2015, Scientific Reports.

[41]  Tianshou Zhao,et al.  A high-rate and long cycle life solid-state lithium–air battery , 2015 .

[42]  Ye Xu,et al.  Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries. , 2015, Nano letters.

[43]  Shu-Lei Chou,et al.  Porous AgPd–Pd Composite Nanotubes as Highly Efficient Electrocatalysts for Lithium–Oxygen Batteries , 2015, Advanced materials.

[44]  Z. Wen,et al.  Wave-like free-standing NiCo2O4 cathode for lithium–oxygen battery with high discharge capacity , 2015 .

[45]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[46]  Chao Liu,et al.  Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency , 2015 .

[47]  Shichao Zhang,et al.  Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium-Air Batteries Catalyzed by Gold/Manganese-Dioxide. , 2015, ACS applied materials & interfaces.

[48]  Wenqing Zhang,et al.  Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery. , 2015, Journal of the American Chemical Society.

[49]  Huamin Zhang,et al.  Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries. , 2015, ACS applied materials & interfaces.

[50]  Bryan D. McCloskey,et al.  Mechanistic Insights for the Development of Li—O2 Battery Materials: Addressing Li2O2 Conductivity Limitations and Electrolyte and Cathode Instabilities , 2015 .

[51]  Qingmei Cheng,et al.  Functionalizing Titanium Disilicide Nanonets with Cobalt Oxide and Palladium for Stable Li Oxygen Battery Operations. , 2015, ACS applied materials & interfaces.

[52]  Huakun Liu,et al.  A B4C nanowire and carbon nanotube composite as a novel bifunctional electrocatalyst for high energy lithium oxygen batteries , 2015 .

[53]  Tianshou Zhao,et al.  A novel solid-state Li–O2 battery with an integrated electrolyte and cathode structure , 2015 .

[54]  Dan Xu,et al.  Flexible lithium–oxygen battery based on a recoverable cathode , 2015, Nature Communications.

[55]  Yungui Chen,et al.  Discharging temperature dependence of Li2O2 formation and its effect on charging polarization for Li–O2 Battery , 2015 .

[56]  Zhichuan J. Xu,et al.  Solid-state activation of Li2O2 oxidation kinetics and implications for Li–O2 batteries , 2015 .

[57]  Tao Zhang,et al.  The water catalysis at oxygen cathodes of lithium–oxygen cells , 2015, Nature Communications.

[58]  Tejs Vegge,et al.  Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S , 2015 .

[59]  Zhen-tao Zhou,et al.  Computational Insights into Oxygen Reduction Reaction and Initial Li2O2 Nucleation on Pristine and N-Doped Graphene in Li–O2 Batteries , 2015 .

[60]  Linda F Nazar,et al.  Nanostructured Metal Carbides for Aprotic Li-O2 Batteries: New Insights into Interfacial Reactions and Cathode Stability. , 2015, The journal of physical chemistry letters.

[61]  Huakun Liu,et al.  A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries. , 2015, Small.

[62]  Qing Wang,et al.  Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery. , 2015, Chemical communications.

[63]  Yong-Mook Kang,et al.  A hybrid gel-solid-state polymer electrolyte for long-life lithium oxygen batteries. , 2015, Chemical communications.

[64]  Wei Shyy,et al.  What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium–air batteries? , 2015 .

[65]  Linda F. Nazar,et al.  A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries , 2015 .

[66]  Yang-Kook Sun,et al.  A Mo2C/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life. , 2015, ACS nano.

[67]  S. Jung,et al.  An atomic-level strategy for the design of a low overpotential catalyst for Li−O2 batteries , 2015 .

[68]  Donald J. Siegel,et al.  Correlating Li/O2 cell capacity and product morphology with discharge current. , 2015, ACS applied materials & interfaces.

[69]  Wei Fan,et al.  Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O₂ battery cathode. , 2015, Angewandte Chemie.

[70]  Wei Shyy,et al.  Discharge product morphology versus operating temperature in non-aqueous lithium-air batteries , 2015 .

[71]  M. Wohlfahrt‐Mehrens,et al.  Au-coated carbon electrodes for aprotic Li–O2 batteries with extended cycle life: The key issue of the Li-ion source , 2015 .

[72]  B. Sundén,et al.  Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries , 2015 .

[73]  Hee Cheul Choi,et al.  Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery , 2015 .

[74]  Yubin Hwang,et al.  Effective catalytic media using graphitic nitrogen-doped site in graphene for a non-aqueous Li–O2 battery: A density functional theory study , 2015 .

[75]  R. Sun,et al.  A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. , 2015, Chemical communications.

[76]  Zhongbo Hu,et al.  Facet-Dependent Electrocatalytic Performance of Co3O4 for Rechargeable Li–O2 Battery , 2015 .

[77]  H. Byon,et al.  A perfluorinated moiety-grafted carbon nanotube electrode for the non-aqueous lithium-oxygen battery. , 2015, Chemical communications.

[78]  Gang Zhang,et al.  Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. , 2015, Nano letters.

[79]  Arumugam Manthiram,et al.  Hybrid and Aqueous Lithium‐Air Batteries , 2015 .

[80]  Soo-Jin Park,et al.  Optimization of Carbon‐ and Binder‐Free Au Nanoparticle‐Coated Ni Nanowire Electrodes for Lithium‐Oxygen Batteries , 2015 .

[81]  Z. Wen,et al.  Air Electrode for the Lithium–Air Batteries: Materials and Structure Designs , 2015 .

[82]  Yongyao Xia,et al.  A lithium air battery with a lithiated Al-carbon anode. , 2015, Chemical communications.

[83]  Z. Wen,et al.  Unraveling the Catalytic Mechanism of Co3O4 for the Oxygen Evolution Reaction in a Li–O2 Battery , 2015 .

[84]  T. Zhao,et al.  Modeling of lithium–oxygen batteries with the discharge product treated as a discontinuous deposit layer , 2015 .

[85]  Linda F. Nazar,et al.  Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery , 2015 .

[86]  N. Imanishi,et al.  Silicon anode for rechargeable aqueous lithium–air batteries , 2015 .

[87]  Xin-bo Zhang,et al.  Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries. , 2015, Advanced materials.

[88]  Huamin Zhang,et al.  Nitrogen-containing mesoporous carbon cathode for lithium-oxygen batteries: The influence of Nitrogen on oxygen reduction reaction , 2014 .

[89]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[90]  Chuan Zhao,et al.  Enhanced performance in mixture DMSO/ionic liquid electrolytes: Toward rechargeable Li –O2 batteries , 2014 .

[91]  Wei Shyy,et al.  A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries , 2014 .

[92]  Hye Ryung Byon,et al.  A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li–O2 batteries , 2014, Scientific Reports.

[93]  Linda F Nazar,et al.  The importance of nanometric passivating films on cathodes for Li-air batteries. , 2014, ACS nano.

[94]  Ruigang Zhang,et al.  Intrinsic Barrier to Electrochemically Decompose Li2CO3 and LiOH , 2014 .

[95]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[96]  Marnix Wagemaker,et al.  Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. , 2014, Journal of the American Chemical Society.

[97]  P. Ajayan,et al.  Carbon Nanotube‐Encapsulated Noble Metal Nanoparticle Hybrid as a Cathode Material for Li‐Oxygen Batteries , 2014 .

[98]  T. Gustafsson,et al.  Pt/α-MnO2 nanotube: A highly active electrocatalyst for Li–O2 battery , 2014 .

[99]  F Mueller,et al.  An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. , 2014, Nano letters.

[100]  Shaomin Li,et al.  Electrochemical performance of binder-free carbon nanotubes with different nitrogen amounts grown on the nickel foam as cathodes in Li–O2 batteries , 2014 .

[101]  S. Cai,et al.  Carbon embedded α-MnO2@graphene nanosheet composite: A bifunctional catalyst for high performance lithium oxygen batteries , 2014 .

[102]  Yongyao Xia,et al.  Humidity effect on electrochemical performance of Li–O2 batteries , 2014 .

[103]  Jürgen Janek,et al.  TEMPO: a mobile catalyst for rechargeable Li-O₂ batteries. , 2014, Journal of the American Chemical Society.

[104]  Chaohe Xu,et al.  Oxide-on-metal as an inverted design of oxygen electrocatalysts for non-aqueous Li-O2 batteries. , 2014, Nanoscale.

[105]  Tianshou Zhao,et al.  A non-carbon cathode electrode for lithium–oxygen batteries , 2014 .

[106]  A. Manthiram,et al.  Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries , 2014 .

[107]  A. Manthiram,et al.  Imidazole-buffered acidic catholytes for hybrid Li–air batteries with high practical energy density , 2014 .

[108]  T. Zhao,et al.  A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity , 2014 .

[109]  S. Dou,et al.  Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries , 2014, Scientific Reports.

[110]  Byung Gon Kim,et al.  Wisdom from the Human Eye: A Synthetic Melanin Radical Scavenger for Improved Cycle Life of Li–O2 Battery , 2014 .

[111]  Jan Fransaer,et al.  Sulfone-Based Electrolytes for Nonaqueous Li–O2 Batteries , 2014 .

[112]  Yang Shao-Horn,et al.  Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries. , 2014, The journal of physical chemistry letters.

[113]  K. Hashimoto,et al.  Efficient Li2O2 Formation via Aprotic Oxygen Reduction Reaction Mediated by Quinone Derivatives , 2014 .

[114]  Yong Zhang,et al.  M13 virus-directed synthesis of nanostructured metal oxides for lithium-oxygen batteries. , 2014, Nano letters.

[115]  K. Amine,et al.  Raman Evidence for Late Stage Disproportionation in a Li-O2 Battery. , 2014, The journal of physical chemistry letters.

[116]  J. Janek,et al.  Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries. , 2014, ACS applied materials & interfaces.

[117]  Prashanta Dutta,et al.  Modeling of volume change phenomena in a Li–air battery , 2014 .

[118]  Zhaolin Liu,et al.  Influence of carbon pore size on the discharge capacity of Li–O2 batteries , 2014 .

[119]  Dong Jin Lee,et al.  Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium-oxygen batteries , 2014 .

[120]  D. Aurbach,et al.  Reactivity of Amide Based Solutions in Lithium–Oxygen Cells , 2014 .

[121]  Dmitri Golberg,et al.  Li‐O2 Battery Based on Highly Efficient Sb‐Doped Tin Oxide Supported Ru Nanoparticles , 2014, Advanced materials.

[122]  Yong Joon Park,et al.  A simple method for surface modification of carbon by polydopamine coating for enhanced Li–air batteries , 2014 .

[123]  Ruiguo Cao,et al.  Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. , 2014, Physical chemistry chemical physics : PCCP.

[124]  Luzhuo Chen,et al.  An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li–O2 batteries , 2014 .

[125]  X. Wang,et al.  Compressed hydrogen gas-induced synthesis of Au–Pt core–shell nanoparticle chains towards high-performance catalysts for Li–O2 batteries , 2014 .

[126]  Dunwei Wang,et al.  Selective deposition of Ru nanoparticles on TiSi₂ nanonet and its utilization for Li₂O₂ formation and decomposition. , 2014, Journal of the American Chemical Society.

[127]  Dan Sun,et al.  A solution-phase bifunctional catalyst for lithium-oxygen batteries. , 2014, Journal of the American Chemical Society.

[128]  Stefania Ferrari,et al.  Investigation of Ether-Based Ionic Liquid Electrolytes for Lithium-O2 Batteries , 2014 .

[129]  Winfried W. Wilcke,et al.  Improved cycle efficiency of lithium metal electrodes in Li–O2 batteries by a two-dimensionally ordered nanoporous separator , 2014 .

[130]  Colm O'Dwyer,et al.  Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory. , 2014, Physical chemistry chemical physics : PCCP.

[131]  Ho-Cheol Kim,et al.  Deactivation of carbon electrode for elimination of carbon dioxide evolution from rechargeable lithium–oxygen cells , 2014, Nature Communications.

[132]  Thomas F. Jaramillo,et al.  A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries , 2014 .

[133]  Li Zhang,et al.  Enhanced Cyclability of Li–O2 Batteries Based on TiO2 Supported Cathodes with No Carbon or Binder , 2014 .

[134]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[135]  Taewoo Kim,et al.  Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. , 2014, Angewandte Chemie.

[136]  Dong Liu,et al.  Optimizing Main Materials for a Lithium‐Air Battery of High Cycle Life , 2014 .

[137]  D. A. Bograchev,et al.  Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes , 2014, Journal of Solid State Electrochemistry.

[138]  Kyeongse Song,et al.  Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts , 2014 .

[139]  Xiaofei Hu,et al.  ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li-O2 batteries. , 2014, Nanoscale.

[140]  Jianglan Shui,et al.  Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries. , 2014, ACS nano.

[141]  D. J. Lee,et al.  Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries , 2014 .

[142]  Jaephil Cho,et al.  Graphene/Graphene‐Tube Nanocomposites Templated from Cage‐Containing Metal‐Organic Frameworks for Oxygen Reduction in Li–O2 Batteries , 2014, Advanced materials.

[143]  Dean J. Miller,et al.  Corrigendum: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2014 .

[144]  Bing Sun,et al.  An optimized LiNO3/DMSO electrolyte for high-performance rechargeable Li–O2 batteries , 2014 .

[145]  Z. Florjańczyk,et al.  Lithium electrolytes based on modified imidazolium ionic liquids , 2014 .

[146]  Zhen Zhou,et al.  A composite of Co nanoparticles highly dispersed on N-rich carbon substrates: an efficient electrocatalyst for Li-O(2) battery cathodes. , 2014, Chemical communications.

[147]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[148]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[149]  Ping He,et al.  Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. , 2014, Angewandte Chemie.

[150]  Zhe Hu,et al.  Size effect of lithium peroxide on charging performance of Li-O2 batteries. , 2014, Nanoscale.

[151]  Y. Ein‐Eli,et al.  Realization of an Artificial Three‐Phase Reaction Zone in a Li–Air Battery , 2014 .

[152]  张莉 Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst , 2014 .

[153]  S. Salley,et al.  Ternary Imidazolium-Pyrrolidinium-Based Ionic Liquid Electrolytes for Rechargeable Li-O2 Batteries , 2014 .

[154]  Huifeng Zhao,et al.  Stability of lithium ion conductor NASICON structure glass ceramic in acid and alkaline aqueous solution , 2014 .

[155]  H. Gasteiger,et al.  Stability of a Pyrrolidinium-Based Ionic Liquid in Li-O2 Cells , 2014 .

[156]  Jim P. Zheng,et al.  A High-Rate Rechargeable Li-Air Flow Battery , 2014 .

[157]  H. Iba,et al.  Ether-functionalized ionic liquid electrolytes for lithium-air batteries , 2013 .

[158]  M. Wohlfahrt‐Mehrens,et al.  Au-coated carbon cathodes for improved oxygen reduction and evolution kinetics in aprotic Li–O2 batteries , 2013 .

[159]  X. Gao,et al.  Multiporous MnCo2O4 Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous Li–O2 Batteries , 2013 .

[160]  Fosong Wang,et al.  Novel polymer electrolyte from poly(carbonate-ether) and lithium tetrafluoroborate for lithium-oxygen battery , 2013 .

[161]  Gregory V. Chase,et al.  N-methylacetamide as an Electrolyte Solvent for Rechargeable Li-O2 Batteries: Unexpected Stability at the O2 electrode , 2013 .

[162]  Taewoo Kim,et al.  A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries , 2013 .

[163]  Yuhui Chen,et al.  A stable cathode for the aprotic Li-O2 battery. , 2013, Nature materials.

[164]  Gregory V. Chase,et al.  Lithium Nitrate As Regenerable SEI Stabilizing Agent for Rechargeable Li/O2 Batteries , 2013 .

[165]  Huamin Zhang,et al.  The use of mixed carbon materials with improved oxygen transport in a lithium-air battery , 2013 .

[166]  Fuminori Mizuno,et al.  Evaluation and analysis of Li-air battery using ether-functionalized ionic liquid , 2013 .

[167]  Khalil Amine,et al.  Disproportionation in Li-O2 batteries based on a large surface area carbon cathode. , 2013, Journal of the American Chemical Society.

[168]  Guangyu Zhao,et al.  Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O2 batteries , 2013 .

[169]  Dan Sun,et al.  A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air , 2013 .

[170]  Xiaoli Dong,et al.  Ordered Hierarchical Mesoporous/Macroporous Carbon: A High‐Performance Catalyst for Rechargeable Li–O2 Batteries , 2013, Advanced materials.

[171]  Tao Zhang,et al.  Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. , 2013, Nano letters.

[172]  J. Gerbec,et al.  Bimodal mesoporous titanium nitride/carbon microfibers as efficient and stable electrocatalysts for Li-O2 batteries , 2013 .

[173]  Yungui Chen,et al.  An in situ formed Pd nanolayer as a bifunctional catalyst for Li-air batteries in ambient or simulated air. , 2013, Chemical communications.

[174]  Dan Xu,et al.  Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries , 2013, Nature Communications.

[175]  Zhiyu Wang,et al.  Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries , 2013 .

[176]  H. Byon,et al.  Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. , 2013, Nano letters.

[177]  Yang Shao-Horn,et al.  Reactivity of carbon in lithium-oxygen battery positive electrodes. , 2013, Nano letters.

[178]  E. Calvo,et al.  Infrared Spectroscopy Studies on Stability of Dimethyl Sulfoxide for Application in a Li–Air Battery , 2013 .

[179]  Daniel Sharon,et al.  Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen , 2013 .

[180]  Yugang Sun Lithium ion conducting membranes for lithium-air batteries , 2013 .

[181]  Wei Shyy,et al.  Prediction of the theoretical capacity of non-aqueous lithium-air batteries , 2013 .

[182]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[183]  Dan Zhao,et al.  Reversibility of anodic lithium in rechargeable lithium–oxygen batteries , 2013, Nature Communications.

[184]  Zhonghui Cui,et al.  Lithium–oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes , 2013 .

[185]  Haoshen Zhou,et al.  The pursuit of rechargeable solid-state Li–air batteries , 2013 .

[186]  Yang Shao-Horn,et al.  Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries , 2013 .

[187]  Yasuhiro Fukunaka,et al.  Optical observation of Li dendrite growth in ionic liquid , 2013 .

[188]  Fang Wang,et al.  Electrochemical performance of a nonaqueous rechargeable lithium-air battery , 2013, Ionics.

[189]  Stefano Meini,et al.  Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells. , 2013, Physical chemistry chemical physics : PCCP.

[190]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[191]  In-Hwan Oh,et al.  Influence of temperature on lithium-oxygen battery behavior. , 2013, Nano letters.

[192]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[193]  Haoshen Zhou,et al.  A reversible long-life lithium–air battery in ambient air , 2013, Nature Communications.

[194]  T. Shiga,et al.  Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent , 2013 .

[195]  K. Scott,et al.  Modelling the micro–macro homogeneous cycling behaviour of a lithium–air battery , 2013 .

[196]  Yang-Kook Sun,et al.  Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries. , 2013, Physical chemistry chemical physics : PCCP.

[197]  Yang Shao-Horn,et al.  Mechanisms of Morphological Evolution of Li2O2 Particles during Electrochemical Growth. , 2013, The journal of physical chemistry letters.

[198]  K. Edström,et al.  The SEI layer formed on lithium metal in the presence of oxygen: A seldom considered component in the development of the Li–O2 battery , 2013 .

[199]  H. S. Lee,et al.  Electrochemical oxidation of solid Li2O2 in non-aqueous electrolyte using peroxide complexing additives for lithium–air batteries , 2013 .

[200]  Yongwon Lee,et al.  Tris(pentafluorophenyl) borane-containing electrolytes for electrochemical reversibility of lithium peroxide-based electrodes in lithium–oxygen batteries , 2013 .

[201]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[202]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[203]  Yang-Kook Sun,et al.  Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery. , 2013, Physical chemistry chemical physics : PCCP.

[204]  M. Mastragostino,et al.  Catalyst-free porous carbon cathode and ionic liquid for high efficiency, rechargeable Li/O2 battery , 2013 .

[205]  Jasim Uddin,et al.  A rechargeable Li-O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. , 2013, Journal of the American Chemical Society.

[206]  P. Novák,et al.  Critical aspects in the development of lithium–air batteries , 2013, Journal of Solid State Electrochemistry.

[207]  Yang Shao-Horn,et al.  Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[208]  Linda F Nazar,et al.  The role of catalysts and peroxide oxidation in lithium-oxygen batteries. , 2013, Angewandte Chemie.

[209]  Gregory V. Chase,et al.  Synergistic Effect of Oxygen and LiNO3 on the Interfacial Stability of Lithium Metal in a Li/O2 Battery , 2013 .

[210]  C. Wen,et al.  A review of high energy density lithium–air battery technology , 2013, Journal of Applied Electrochemistry.

[211]  D. Rolison,et al.  Carbon Nanofoam-Based Cathodes for Li–O2 Batteries: Correlation of Pore–Solid Architecture and Electrochemical Performance , 2013 .

[212]  J. Janek,et al.  An electrolyte partially-wetted cathode improving oxygen diffusion in cathodes of non-aqueous Li–air batteries , 2013 .

[213]  Thomas A. Blake,et al.  Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode , 2013 .

[214]  Jun Lu,et al.  The effect of oxygen crossover on the anode of a Li-O(2) battery using an ether-based solvent: insights from experimental and computational studies. , 2013, ChemSusChem.

[215]  Stefania Ferrari,et al.  Recent advances in the development of Li–air batteries , 2012 .

[216]  Kai Xie,et al.  N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries , 2012 .

[217]  Si Hyoung Oh,et al.  Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. , 2012, Nature chemistry.

[218]  Jianming Bai,et al.  Electrochemical decomposition of Li2CO3 in NiO–Li2CO3 nanocomposite thin film and powder electrodes , 2012 .

[219]  Bryan D. McCloskey,et al.  On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries , 2012 .

[220]  K. Amine,et al.  A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries. , 2012, Nano letters.

[221]  Tao Zhang,et al.  From Li-O2 to Li-air batteries: carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. , 2012, Angewandte Chemie.

[222]  Ji‐Guang Zhang,et al.  The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries , 2012 .

[223]  M. Balasubramanian,et al.  Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. , 2012, Journal of the American Chemical Society.

[224]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[225]  Samanvaya Srivastava,et al.  High energy lithium–oxygen batteries – transport barriers and thermodynamics , 2012 .

[226]  Haoshen Zhou,et al.  Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode , 2012 .

[227]  E. Plichta,et al.  Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries , 2012 .

[228]  G. Cui,et al.  Oxygen-enriched carbon material for catalyzing oxygen reduction towards hybrid electrolyte Li-air battery , 2012 .

[229]  C. Cantau,et al.  Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery , 2012 .

[230]  Zhiguo Wang,et al.  H+ diffusion and electrochemical stability of Li1+x+yAlxTi2−xSiyP3−yO12 glass in aqueous Li/air battery electrolytes , 2012 .

[231]  Xin-bo Zhang,et al.  Lithium Ion Batteries: Graphene Oxide Gel‐Derived, Free‐Standing, Hierarchically Porous Carbon for High‐Capacity and High‐Rate Rechargeable Li‐O2 Batteries (Adv. Funct. Mater. 17/2012) , 2012 .

[232]  B. Scrosati,et al.  Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid , 2012 .

[233]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[234]  P. Bruce,et al.  The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes , 2012 .

[235]  K. Kang,et al.  The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. , 2012, Chemical communications.

[236]  In-Hwan Oh,et al.  A transmission electron microscopy study of the electrochemical process of lithium-oxygen cells. , 2012, Nano letters.

[237]  P. He,et al.  Nano- and micro-sized TiN as the electrocatalysts for ORR in Li–air fuel cell with alkaline aqueous electrolyte , 2012 .

[238]  Yang Shao-Horn,et al.  Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. , 2012, Physical chemistry chemical physics : PCCP.

[239]  Haoshen Zhou,et al.  Electrochemical Performance of Solid‐State Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode , 2012 .

[240]  Robert W. Black,et al.  Non‐Aqueous and Hybrid Li‐O2 Batteries , 2012 .

[241]  L. Nazar,et al.  Oxide Catalysts for Rechargeable High‐Capacity Li–O2 Batteries , 2012 .

[242]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[243]  F. Faglioni,et al.  Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries. , 2012, The journal of physical chemistry. A.

[244]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[245]  N. Dudney,et al.  Influence of Lithium Salts on the Discharge Chemistry of Li-Air Cells. , 2012, The journal of physical chemistry letters.

[246]  Youngsik Kim,et al.  Effects of aqueous electrolytes on the voltage behaviors of rechargeable Li-air batteries , 2012 .

[247]  K. Scott,et al.  Performance of MnO2 Crystallographic Phases in Rechargeable Lithium-Air Oxygen Cathode , 2012, Journal of Electronic Materials.

[248]  J. Nørskov,et al.  Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. , 2012, The journal of physical chemistry letters.

[249]  Benjamin Meyer,et al.  Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane , 2012 .

[250]  Ye Xu,et al.  Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium. , 2012, The journal of physical chemistry letters.

[251]  Kai Xie,et al.  Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries , 2012 .

[252]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[253]  Linda F. Nazar,et al.  Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. , 2012, Journal of the American Chemical Society.

[254]  Hubert A. Gasteiger,et al.  Effect of Carbon Surface Area on First Discharge Capacity of Li-O2 Cathodes and Cycle-Life Behavior in Ether-Based Electrolytes , 2012 .

[255]  Hubert A. Gasteiger,et al.  The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries , 2012 .

[256]  Gbolahan O. Shitta-Bey,et al.  The Electrochemical Performance of Phenol-Formaldehyde Based Activated Carbon Electrodes for Lithium/Oxygen Batteries , 2012 .

[257]  A. Faghri,et al.  Optimization of the Cathode Structure of Lithium-Air Batteries Based on a Two-Dimensional, Transient, Non-Isothermal Model , 2012 .

[258]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[259]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[260]  Zonghai Chen,et al.  Single‐Crystal Silicon Membranes with High Lithium Conductivity and Application in Lithium‐Air Batteries , 2011, Advanced materials.

[261]  Hubert A. Gasteiger,et al.  Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. , 2011, Journal of the American Chemical Society.

[262]  Z. Wen,et al.  A free-standing-type design for cathodes of rechargeable Li–O2 batteries , 2011 .

[263]  D. Bethune,et al.  On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. , 2011, Journal of the American Chemical Society.

[264]  M. Mastragostino,et al.  Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes , 2011 .

[265]  P. He,et al.  Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. , 2011, Chemical communications.

[266]  Tao Zhang,et al.  Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li , 2011 .

[267]  Sanjeev Mukerjee,et al.  Oxygen Electrode Rechargeability in an Ionic Liquid for the Li–Air Battery , 2011 .

[268]  Yuhui Chen,et al.  The lithium-oxygen battery with ether-based electrolytes. , 2011, Angewandte Chemie.

[269]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[270]  M. Salomon,et al.  Methoxybenzene as an Electrolyte Solvent for the Primary Lithium Metal Air Battery , 2011 .

[271]  G. Graff,et al.  Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte , 2011 .

[272]  Ping He,et al.  The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid ele , 2011 .

[273]  N. Imanishi,et al.  Aqueous Lithium/Air Rechargeable Batteries , 2011 .

[274]  Nancy J. Dudney,et al.  Current Collectors for Rechargeable Li-Air Batteries , 2011 .

[275]  N. Sammes,et al.  A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions , 2011 .

[276]  Xiangwu Zhang,et al.  Lithiumoxygen batteriesLimiting factors that affect performance , 2011 .

[277]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[278]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[279]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[280]  Tohru Shiga,et al.  A Li-O2/CO2 battery. , 2011, Chemical communications.

[281]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[282]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[283]  M. Salomon,et al.  Primary Li-air cell development , 2011 .

[284]  Petru Andrei,et al.  The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries , 2011 .

[285]  T. Shiga,et al.  Design of Non-aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries , 2011 .

[286]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[287]  John B. Goodenough,et al.  CoMn2O4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries , 2011 .

[288]  Petru Andrei,et al.  Some Possible Approaches for Improving the Energy Density of Li-air Batteries , 2010 .

[289]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[290]  T. Homma,et al.  In Situ Observation of Dendrite Growth of Electrodeposited Li Metal , 2010 .

[291]  Wei Liu,et al.  Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air , 2010 .

[292]  Peter Hall,et al.  Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy , 2010 .

[293]  Tao Zhang,et al.  Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li , 2010 .

[294]  Paul C. Johnson,et al.  A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions , 2010 .

[295]  Haoshen Zhou,et al.  A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism. , 2010, Chemical communications.

[296]  Ben Wang,et al.  Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes , 2010 .

[297]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[298]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[299]  Wu Xu,et al.  High Capacity Pouch-Type Li–Air Batteries , 2010 .

[300]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[301]  Paul Albertus,et al.  Batteries for electric and hybrid-electric vehicles. , 2010, Annual review of chemical and biomolecular engineering.

[302]  T. Shodai,et al.  Surface Properties and Electrochemical Performance of Carbon Materials for Air Electrodes of Lithium-Air Batteries , 2010 .

[303]  N. Imanishi,et al.  Water-Stable Lithium Electrode and Its Application in Aqueous Lithium/Air Secondary Batteries , 2010 .

[304]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[305]  Binod Kumar,et al.  Cathodes for Solid-State Lithium–Oxygen Cells: Roles of Nasicon Glass-Ceramics , 2010 .

[306]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[307]  Deyang Qu,et al.  Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity , 2010 .

[308]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[309]  Wu Xu,et al.  Optimization of Air Electrode for Li/Air Batteries , 2010 .

[310]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[311]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[312]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[313]  Tao Zhang,et al.  A novel high energy density rechargeable lithium/air battery. , 2009, Chemical communications.

[314]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[315]  B. Kumar,et al.  Development of membranes and a study of their interfaces for rechargeable lithium–air battery , 2009 .

[316]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[317]  Wu Xu,et al.  Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment , 2009 .

[318]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[319]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[320]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[321]  Yongyao Xia,et al.  The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery , 2009 .

[322]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[323]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[324]  Alan C. West,et al.  Effect of Electrolyte Composition on Lithium Dendrite Growth , 2008 .

[325]  Jim P. Zheng,et al.  Theoretical Energy Density of Li–Air Batteries , 2008 .

[326]  Z. Wen,et al.  Lithium Ion‐Conducting Glass–Ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with Good Electrical and Electrochemical Properties , 2007 .

[327]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[328]  M. Salomon,et al.  Li-air batteries: A classic example of limitations owing to solubilities , 2007 .

[329]  Jean-Marie Tarascon,et al.  Dendrite short-circuit and fuse effect on Li/polymer/Li cells , 2006 .

[330]  J. Read Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery , 2006 .

[331]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[332]  Masaki Yamagata,et al.  Electrochemical Behavior of Oxygen/Superoxide Ion Couple in 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Room-Temperature Molten Salt , 2005 .

[333]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[334]  G. Rao,et al.  Lithium conducting glass ceramic with Nasicon structure , 2002 .

[335]  G. Rao,et al.  Fast ion conduction in the Li-analogues of Nasicon, Li1 + x[(Ta1 −xGex)Al](PO4)3 , 2002 .

[336]  M. Wakihara Recent developments in lithium ion batteries , 2001 .

[337]  G. Rao,et al.  XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics , 2000 .

[338]  J.-N. Chazalviel,et al.  In Situ Concentration Cartography in the Neighborhood of Dendrites Growing in Lithium/Polymer‐Electrolyte/Lithium Cells , 1999 .

[339]  J.-N. Chazalviel,et al.  Dendritic growth mechanisms in lithium/polymer cells , 1999 .

[340]  V. Thangadurai,et al.  New lithium-ion conductors based on the NASICON structure , 1999 .

[341]  J.-N. Chazalviel,et al.  In situ study of dendritic growth inlithium/PEO-salt/lithium cells , 1998 .

[342]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[343]  G. Adachi,et al.  High Li+ Conducting Ceramics , 1994 .

[344]  Y. Sadaoka,et al.  Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and In Systems. , 1992 .