DNA barcodes of the Greater Antillean butterflies (Lepidoptera: Papilionoidea) suggest a richer, more isolated fauna and higher endemism

We provide the first comprehensive assessment of the Greater Antilles butterfly fauna from a molecular perspective. We gathered COI barcodes for 82% of the archipelago’s 367 species. Barcodes perform relatively well for species identification. A barcode gap separates 83% of the 270 species (represented by at least two sequences) from its nearest neighbour (NN). Of the 31 species represented by single barcodes, 26 have minimum distances from their NN above 2%. Maximum intraspecific distances are higher than 2% for 57 species (21%); however, values are lower within single islands suggesting that a part of these species has evolved into endemic lineages overlooked or unrecognized until today. Barcodes are diagnostic for only 80 of the currently accepted 180 subspecies represented by at least two sequences suggesting numerous conflicts with the infraspecific classification and highlighting its subjectivity. For 20 species, and several subspecies within them, we propose a split into two or more species and elevating several subspecies to the species category. Other data sources including novel or previously ignored morphological characters of adults and immature stages, natural history and/or additional nuclear sequences support these taxonomic changes.

[1]  S. Machkour‐M'Rabet,et al.  New Complex of Cryptic Species Discovered in Genus Biblis (Papilionoidea: Nymphalidae: Biblidinae) in Mexico , 2022, Neotropical Entomology.

[2]  Morgan R. Gostel,et al.  The Expanding Role of DNA Barcodes: Indispensable Tools for Ecology, Evolution, and Conservation , 2022, Diversity.

[3]  N. Grishin,et al.  Taxonomic changes suggested by the genomic analysis of Hesperiidae (Lepidoptera) , 2022, Insecta mundi.

[4]  G. Lamas,et al.  Integrative taxonomy clarifies species limits in the hitherto monotypic passion‐vine butterfly genera Agraulis and Dryas (Lepidoptera, Nymphalidae, Heliconiinae) , 2021, Systematic Entomology.

[5]  Jarrett D. Phillips,et al.  A DNA barcode library for the butterflies of North America , 2021, PeerJ.

[6]  M. Espeland,et al.  Adding leaves to the Lepidoptera tree: capturing hundreds of nuclear genes from old museum specimens , 2021 .

[7]  A. Hausmann,et al.  Redescription and evolutionary relationships of the Cuban endemic monotypic genus Holguinia Evans, 1955 (Lepidoptera, Hesperiidae, Hesperiinae) , 2020 .

[8]  L. Duret,et al.  How consistent is RAD‐seq divergence with DNA‐barcode based clustering in insects? , 2020, Molecular ecology resources.

[9]  D. Janzen,et al.  Species delimitation and evolutionary relationships among Phoebis New World sulphur butterflies (Lepidoptera, Pieridae, Coliadinae) , 2020 .

[10]  N. Grishin,et al.  Speciation in North American Junonia from a genomic perspective , 2020, Systematic entomology.

[11]  R. Vilà,et al.  Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies , 2019, Molecular ecology resources.

[12]  R. DeSalle,et al.  Review and Interpretation of Trends in DNA Barcoding , 2019, Front. Ecol. Evol..

[13]  A. Hausmann,et al.  The herophile species group of Calisto (Lepidoptera : Nymphalidae : Satyrinae), new taxa and historical biogeography , 2019, Invertebrate Systematics.

[14]  M. Wiemers,et al.  World travellers: phylogeny and biogeography of the butterfly genus Leptotes (Lepidoptera: Lycaenidae) , 2019, Systematic Entomology.

[15]  A. Hausmann,et al.  Revalidation of an endemic Cuban Skipper, Chiomara gundlachi (Lepidoptera: Hesperiidae). , 2018, Zootaxa.

[16]  R. N. Águila,et al.  Taxonomic reassessment of species within the chrysaoros group of Calisto (Lepidoptera : Nymphalidae : Satyrinae) , 2017, Invertebrate Systematics.

[17]  P. Hebert,et al.  Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence , 2017, PloS one.

[18]  A. Hausmann,et al.  A new species of the hysius species-group of Calisto Hübner (Lepidoptera, Nymphalidae, Satyrinae) and insights into the status of different populations currently attributed to C. grannus Bates , 2017 .

[19]  Jeremy R. deWaard,et al.  Probing planetary biodiversity with DNA barcodes: The Noctuoidea of North America , 2017, PloS one.

[20]  N. Grishin,et al.  When COI barcodes deceive: complete genomes reveal introgression in hairstreaks , 2017, Proceedings of the Royal Society B: Biological Sciences.

[21]  M. Mutanen,et al.  Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life , 2016, Scientific Reports.

[22]  J. Genaro,et al.  Morphology and COI barcodes reveal four new species in the lycieus group of Calisto (Lepidoptera, Nymphalidae, Satyrinae). , 2016, Zootaxa.

[23]  R. Vos,et al.  Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera , 2016, Systematic biology.

[24]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[25]  N. Grishin,et al.  Speciation in Cloudless Sulphurs Gleaned from Complete Genomes , 2016, Genome biology and evolution.

[26]  A. Kawahara,et al.  Role of Caribbean Islands in the diversification and biogeography of Neotropical Heraclides swallowtails , 2015, Cladistics : the international journal of the Willi Hennig Society.

[27]  P. Hebert,et al.  Testing DNA Barcode Performance in 1000 Species of European Lepidoptera: Large Geographic Distances Have Small Genetic Impacts , 2014, PloS one.

[28]  Eric D. Stein,et al.  Is DNA Barcoding Actually Cheaper and Faster than Traditional Morphological Methods: Results from a Survey of Freshwater Bioassessment Efforts in the United States? , 2014, PloS one.

[29]  N. Wahlberg,et al.  New Calisto species from Cuba, with insights on the relationships of Cuban and Bahamian taxa (Lepidoptera, Nymphalidae, Satyrinae). , 2013, Zootaxa.

[30]  M. Braby,et al.  The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? , 2012 .

[31]  D. Janzen,et al.  Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems , 2012, PloS one.

[32]  P. Taberlet,et al.  Towards next‐generation biodiversity assessment using DNA metabarcoding , 2012, Molecular ecology.

[33]  N. Wahlberg,et al.  Cuban Calisto (Lepidoptera, Nymphalidae, Satyrinae), a review based on morphological and DNA data , 2012, ZooKeys.

[34]  P. Hebert,et al.  Beyond the Colours: Discovering Hidden Diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA Barcoding , 2011, PloS one.

[35]  E. Zakharov,et al.  “Darwin’s butterflies”? DNA barcoding and the radiation of the endemic Caribbean butterfly genus Calisto (Lepidoptera, Nymphalidae, Satyrinae) , 2011, Comparative Cytogenetics.

[36]  N. Galtier,et al.  Mitochondrial DNA as a marker of molecular diversity: a reappraisal , 2009, Molecular ecology.

[37]  J. E. Rawlins,et al.  Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity , 2009, Molecular ecology resources.

[38]  S. Renner,et al.  Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events , 2009, Proceedings of the Royal Society B: Biological Sciences.

[39]  R. Ricklefs,et al.  The West Indies as a laboratory of biogeography and evolution , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  D. Janzen,et al.  DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservación Guanacaste, Costa Rica , 2008, Proceedings of the National Academy of Sciences.

[41]  Kevin de Queiroz,et al.  Species Concepts and Species Delimitation , 2007 .

[42]  R DeSalle,et al.  Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata , 2007, Proceedings of the Royal Society B: Biological Sciences.

[43]  P. Hebert,et al.  bold: The Barcode of Life Data System (http://www.barcodinglife.org) , 2007, Molecular ecology notes.

[44]  M. Iturralde-Vinent Meso-Cenozoic Caribbean Paleogeography: Implications for the Historical Biogeography of the Region , 2006 .

[45]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[46]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[47]  N. Grishin,et al.  Genomics-guided refinement of butterfly taxonomy. , 2021, The taxonomic report of the International Lepidoptera Survey.

[48]  An Updated Concept of Subspecies Resolves a Dispute about the Taxonomy of Incompletely Separated Lineages , 2020 .

[49]  N. Grishin,et al.  Are Miami blues in Cuba? A review of the genus Cyclargus Nabokov (Lepidoptera: Lycaenidae) with implications for conservation management , 2018 .

[50]  N. Grishin,et al.  Review of the West Indian Astraptes xagua (Lucas) complex (Hesperiidae: Eudaminae) with the description of a new subspecies from the Bahamas , 2016, The Journal of Research on the Lepidoptera.

[51]  D. Janzen,et al.  DNA barcodes of closely related (but morphologically and ecologically distinct) species of skipper butterflies (Hesperiidae) can differ by only one to three nucleotides , 2007 .