Writing on Dirty Paper with Feedback

"Writing on dirty paper" refers to the communication problem over a channel with both noise and interference, where the interference is known to the encoder non-causally and unknown to the decoder. This problem is regarded as a basic building block in communication, and it has been extensively investigated by Costa and other researchers. However, little is known in the case that the encoder can have access to feedback from the decoder. In this paper, we study the dirty paper coding problem for feedback Gaussian channels without or with memory. We provide the most power efficient coding schemes for this problem, i.e., the schemes achieve lossless interference cancellation. These schemes are based on the Kalman filtering algorithm, extend the Schalkwijk-Kailath feedback codes, have low complexity and a doubly exponential reliability function, and reveal the interconnections among information, control, and estimation over dirty paper channels with feedback. This research may be found useful to, for example, power-constrained sensor network communication

[1]  Sekhar Tatikonda,et al.  On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory , 2007, IEEE Transactions on Information Theory.

[2]  Young Han Kim Feedback capacity of the first-order moving average Gaussian channel , 2004, IEEE Transactions on Information Theory.

[3]  Shlomo Shamai,et al.  Capacity and lattice strategies for canceling known interference , 2005, IEEE Transactions on Information Theory.

[4]  Anant Sahai,et al.  Anytime communication over the Gilbert-Eliot channel with noiseless feedback , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[5]  Tsachy Weissman,et al.  Coding for the feedback Gel'fand-Pinsker channel and the feedforward Wyner-Ziv source , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[6]  Stephan ten Brink,et al.  A close-to-capacity dirty paper coding scheme , 2004, IEEE Transactions on Information Theory.

[7]  Nicola Elia,et al.  Achieving the Stationary Feedback Capacity for Gaussian Channels , 2005 .

[8]  Nigel J. Newton,et al.  Information and Entropy Flow in the Kalman–Bucy Filter , 2005 .

[9]  Sekhar Tatikonda,et al.  Capacity-achieving feedback scheme for Markov channels with channel state information , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[10]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[11]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[12]  Sekhar Tatikonda,et al.  Linear Gaussian channels: feedback capacity under power constraints , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[13]  Meir Feder,et al.  On a capacity achieving scheme for the colored Gaussian channel with feedback , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[14]  S. Sahai,et al.  The necessity and sufficiency of anytime capacity for control over a noisy communication link , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  N. Elia Control-oriented feedback communication schemes , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[16]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[17]  A. Cohen,et al.  The rate loss in writing on dirty paper , 2003 .

[18]  A. Lapidoth,et al.  Generalized writing on dirty paper , 2002, Proceedings IEEE International Symposium on Information Theory,.

[19]  Amos Lapidoth,et al.  The Gaussian watermarking game , 2000, IEEE Trans. Inf. Theory.

[20]  T. Cover,et al.  Writing on colored paper , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[21]  Sekhar Tatikonda,et al.  Markov control problems under communication constraints , 2001, Commun. Inf. Syst..

[22]  Anant Sahai,et al.  Anytime information theory , 2001 .

[23]  Frans M. J. Willems Signaling for the Gaussian channel with side information at the transmitter , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[24]  J. O’Sullivan,et al.  Information-theoretic analysis of information hiding , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[25]  T. Kailath,et al.  A coding scheme for additive noise channels with feedback, Part I: No bandwith constraint , 1998 .

[26]  Thomas M. Cover,et al.  Gaussian feedback capacity , 1989, IEEE Trans. Inf. Theory.

[27]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[28]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[29]  R. Gallager Information Theory and Reliable Communication , 1968 .

[30]  G. H. Smerage The realizability of a coding scheme for additive noise channels with feedback , 1967 .

[31]  Thomas Kailath,et al.  A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.

[32]  J. Pieter M. Schalkwijk,et al.  A coding scheme for additive noise channels with feedback-II: Band-limited signals , 1966, IEEE Trans. Inf. Theory.

[33]  Claude E. Shannon,et al.  Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..