Writing on Dirty Paper with Feedback
暂无分享,去创建一个
[1] Sekhar Tatikonda,et al. On the Feedback Capacity of Power-Constrained Gaussian Noise Channels With Memory , 2007, IEEE Transactions on Information Theory.
[2] Young Han Kim. Feedback capacity of the first-order moving average Gaussian channel , 2004, IEEE Transactions on Information Theory.
[3] Shlomo Shamai,et al. Capacity and lattice strategies for canceling known interference , 2005, IEEE Transactions on Information Theory.
[4] Anant Sahai,et al. Anytime communication over the Gilbert-Eliot channel with noiseless feedback , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[5] Tsachy Weissman,et al. Coding for the feedback Gel'fand-Pinsker channel and the feedforward Wyner-Ziv source , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[6] Stephan ten Brink,et al. A close-to-capacity dirty paper coding scheme , 2004, IEEE Transactions on Information Theory.
[7] Nicola Elia,et al. Achieving the Stationary Feedback Capacity for Gaussian Channels , 2005 .
[8] Nigel J. Newton,et al. Information and Entropy Flow in the Kalman–Bucy Filter , 2005 .
[9] Sekhar Tatikonda,et al. Capacity-achieving feedback scheme for Markov channels with channel state information , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[10] Nicola Elia,et al. When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.
[11] Sekhar Tatikonda,et al. Control under communication constraints , 2004, IEEE Transactions on Automatic Control.
[12] Sekhar Tatikonda,et al. Linear Gaussian channels: feedback capacity under power constraints , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[13] Meir Feder,et al. On a capacity achieving scheme for the colored Gaussian channel with feedback , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[14] S. Sahai,et al. The necessity and sufficiency of anytime capacity for control over a noisy communication link , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[15] N. Elia. Control-oriented feedback communication schemes , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[16] Shlomo Shamai,et al. On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.
[17] A. Cohen,et al. The rate loss in writing on dirty paper , 2003 .
[18] A. Lapidoth,et al. Generalized writing on dirty paper , 2002, Proceedings IEEE International Symposium on Information Theory,.
[19] Amos Lapidoth,et al. The Gaussian watermarking game , 2000, IEEE Trans. Inf. Theory.
[20] T. Cover,et al. Writing on colored paper , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[21] Sekhar Tatikonda,et al. Markov control problems under communication constraints , 2001, Commun. Inf. Syst..
[22] Anant Sahai,et al. Anytime information theory , 2001 .
[23] Frans M. J. Willems. Signaling for the Gaussian channel with side information at the transmitter , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[24] J. O’Sullivan,et al. Information-theoretic analysis of information hiding , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[25] T. Kailath,et al. A coding scheme for additive noise channels with feedback, Part I: No bandwith constraint , 1998 .
[26] Thomas M. Cover,et al. Gaussian feedback capacity , 1989, IEEE Trans. Inf. Theory.
[27] Max H. M. Costa,et al. Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.
[28] Huibert Kwakernaak,et al. Linear Optimal Control Systems , 1972 .
[29] R. Gallager. Information Theory and Reliable Communication , 1968 .
[30] G. H. Smerage. The realizability of a coding scheme for additive noise channels with feedback , 1967 .
[31] Thomas Kailath,et al. A coding scheme for additive noise channels with feedback-I: No bandwidth constraint , 1966, IEEE Trans. Inf. Theory.
[32] J. Pieter M. Schalkwijk,et al. A coding scheme for additive noise channels with feedback-II: Band-limited signals , 1966, IEEE Trans. Inf. Theory.
[33] Claude E. Shannon,et al. Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..