Quantum sized, thiolate-protected gold nanoclusters.

The scientific study of gold nanoparticles (typically 1-100 nm) has spanned more than 150 years since Faraday's time and will apparently last longer. This review will focus on a special type of ultrasmall (<2 nm) yet robust gold nanoparticles that are protected by thiolates, so-called gold thiolate nanoclusters, denoted as Au(n)(SR)(m) (where, n and m represent the number of gold atoms and thiolate ligands, respectively). Despite the past fifteen years' intense work on Au(n)(SR)(m) nanoclusters, there is still a tremendous amount of science that is not yet understood, which is mainly hampered by the unavailability of atomically precise Au(n)(SR)(m) clusters and by their unknown structures. Nonetheless, recent research advances have opened an avenue to achieving the precise control of Au(n)(SR)(m) nanoclusters at the ultimate atomic level. The successful structural determination of Au(102)(SPhCOOH)(44) and [Au(25)(SCH(2)CH(2)Ph)(18)](q) (q = -1, 0) by X-ray crystallography has shed some light on the unique atomic packing structure adopted in these gold thiolate nanoclusters, and has also permitted a precise correlation of their structure with properties, including electronic, optical and magnetic properties. Some exciting research is anticipated to take place in the next few years and may stimulate a long-lasting and wider scientific and technological interest in this special type of Au nanoparticles.

[1]  D. Ly,et al.  High yield, large scale synthesis of thiolate-protected Ag7 clusters. , 2009, Journal of the American Chemical Society.

[2]  R. Jin,et al.  Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. , 2009, ACS nano.

[3]  R. Jin,et al.  Conversion of Polydisperse Au Nanoparticles into Monodisperse Au25 Nanorods and Nanospheres , 2009 .

[4]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[5]  M. Pettersson,et al.  Characterization of iron-carbonyl-protected gold clusters. , 2009, Journal of the American Chemical Society.

[6]  L. Dal Negro,et al.  Silver nanoparticles with broad multiband linear optical absorption. , 2009, Angewandte Chemie.

[7]  Y. Negishi,et al.  Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region , 2009 .

[8]  T. Pradeep,et al.  PAPER www.rsc.org/materials | Journal of Materials Chemistry Interfacial synthesis of luminescent 7 kDa silver clusters†‡ , 2009 .

[9]  R. Jin,et al.  Thiolate-protected Au(20) clusters with a large energy gap of 2.1 eV. , 2009, Journal of the American Chemical Society.

[10]  Joseph F. Parker,et al.  Femtosecond Relaxation Dynamics of Au25L18− Monolayer-Protected Clusters , 2009 .

[11]  Hongzheng Chen,et al.  Atomically monodispersed and fluorescent sub-nanometer gold clusters created by biomolecule-assisted etching of nanometer-sized gold particles and rods. , 2009, Chemistry.

[12]  H. Sakurai,et al.  Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. , 2009, Journal of the American Chemical Society.

[13]  R. Jin,et al.  Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. , 2009, The journal of physical chemistry. A.

[14]  R. Gil,et al.  Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. , 2009, Journal of the American Chemical Society.

[15]  N. Coombs,et al.  Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[16]  C. Creutz,et al.  The coordination chemistry of gold surfaces: Formation and far-infrared spectra of alkanethiolate-capped gold nanoparticles , 2009 .

[17]  Robin H. A. Ras,et al.  Color tunability and electrochemiluminescence of silver nanoclusters. , 2009, Angewandte Chemie.

[18]  S. Dai,et al.  From superatomic Au25(SR)18(-) to superatomic M@Au24(SR)18(q) core-shell clusters. , 2009, Inorganic chemistry.

[19]  Thomas Bürgi,et al.  Chiral gold nanoparticles. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  R. Jin,et al.  Reversible switching of magnetism in thiolate-protected Au25 superatoms. , 2009, Journal of the American Chemical Society.

[21]  X. Zeng,et al.  Onset of double helical structure in small-sized homoleptic gold thiolate clusters. , 2009, The journal of physical chemistry. A.

[22]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[23]  Martin M. F. Choi,et al.  Application of HPLC and MALDI-TOF MS for studying as-synthesized ligand-protected gold nanoclusters products. , 2009, Analytical chemistry.

[24]  Zhikun Wu,et al.  One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters , 2009 .

[25]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[26]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.

[27]  R. Dickson,et al.  Shuttle-based fluorogenic silver-cluster biolabels. , 2009, Angewandte Chemie.

[28]  Joseph F. Parker,et al.  Mass Spectrometrically Detected Statistical Aspects of Ligand Populations in Mixed Monolayer Au25L18 Nanoparticles , 2008 .

[29]  C. Aikens,et al.  Origin of Discrete Optical Absorption Spectra of M25(SH)18− Nanoparticles (M = Au, Ag) , 2008 .

[30]  J. Rivas,et al.  Synthesis of atomic gold clusters with strong electrocatalytic activities. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  H. Yao,et al.  Asymmetric Transformation of Monolayer-Protected Gold Nanoclusters via Chiral Phase Transfer , 2008 .

[32]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[33]  R. Jin,et al.  Super robust nanoparticles for biology and biomedicine. , 2008, Angewandte Chemie.

[34]  F. Gygi,et al.  Electronic structure of thiolate-covered gold nanoparticles: Au102(MBA)44. , 2008, ACS nano.

[35]  Brian F. G. Johnson,et al.  Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters , 2008, Nature.

[36]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[37]  C. Femoni,et al.  An organometallic approach to gold nanoparticles: synthesis and X-ray structure of CO-protected Au21Fe10, Au22Fe12, Au28Fe14, and Au34Fe14 clusters. , 2008, Angewandte Chemie.

[38]  G. Schmid The relevance of shape and size of Au55 clusters. , 2008, Chemical Society reviews.

[39]  P. Liljeroth,et al.  Quantised charging of monolayer-protected nanoparticles. , 2008, Chemical Society reviews.

[40]  Peter Liljeroth,et al.  Synthesis and stability of monolayer-protected Au38 clusters. , 2008, Journal of the American Chemical Society.

[41]  T. Pradeep,et al.  Ligand Exchange of Au25SG18 Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence , 2008 .

[42]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[43]  X. Zeng,et al.  Ab initio study of thiolate-protected Au102 nanocluster. , 2008, ACS nano.

[44]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[45]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[46]  L. F. Dahl,et al.  Crystallographically proven nanometer-sized gold thiolate cluster Au102(SR)44: its unexpected molecular anatomy and resulting stereochemical and bonding consequences. , 2008, Small.

[47]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[48]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[49]  T. Goodson,et al.  Quantum-sized gold clusters as efficient two-photon absorbers. , 2008, Journal of the American Chemical Society.

[50]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[51]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[52]  T. Bürgi,et al.  Chiral 1,1'-binaphthyl-2,2'-dithiol-stabilized gold clusters: size separation and optical activity in the UV-vis. , 2008, Chirality.

[53]  H. Yao,et al.  Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[54]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[55]  T. Pradeep,et al.  Reactivity of Au25 clusters with Au3 , 2007 .

[56]  Joseph F. Parker,et al.  Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. , 2007, Journal of the American Chemical Society.

[57]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[58]  R. Whetten,et al.  Nano-Golden Order , 2007, Science.

[59]  A. Bleloch,et al.  Synthesis of omega-hydroxy hexathiolate-protected subnanometric gold clusters. , 2007, Journal of the American Chemical Society.

[60]  H. Yao,et al.  Chiroptical Responses of d-/l-Penicillamine-Capped Gold Clusters under Perturbations of Temperature Change and Phase Transfer , 2007 .

[61]  S. Pennycook,et al.  s-Electron ferromagnetism in gold and silver nanoclusters. , 2007, Nano letters.

[62]  R. Whetten,et al.  Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. , 2007, Journal of the American Chemical Society.

[63]  K. Nobusada,et al.  Gold-thiolate core-in-cage cluster Au25(SCH3)18 shows localized spins in charged states , 2007 .

[64]  Y. Negishi,et al.  Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18): A Stepping Stone to Cluster-Assembled Materials , 2007 .

[65]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[66]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[67]  Jinlan Wang,et al.  Gold-coated transition-metal anion [Mn13@Au20]- with ultrahigh magnetic moment. , 2007, Journal of the American Chemical Society.

[68]  J. Alexander,et al.  Colloids and the Ultramicroscope: A Manual of Colloid Chemistry and Ultramicroscopy , 2007 .

[69]  K. Al‐Shamery,et al.  Formation of alkanethiolate-protected gold clusters with unprecedented core sizes in the thiolation of polymer-stabilized gold clusters , 2007 .

[70]  S. Nie,et al.  Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. , 2007, Journal of the American Chemical Society.

[71]  R. Dickson,et al.  Ag Nanocluster Formation Using a Cytosine Oligonucleotide Template. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[72]  T. Yokoyama,et al.  X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. , 2006, Journal of the American Chemical Society.

[73]  C. Murphy,et al.  One-dimensional colloidal gold and silver nanostructures. , 2006, Inorganic chemistry.

[74]  R. Finke,et al.  Nanocluster formation and stabilization fundamental studies: investigating "solvent-only" stabilization en route to discovering stabilization by the traditionally weakly coordinating anion BF4- plus high dielectric constant solvents. , 2006, Inorganic chemistry.

[75]  Thomas Bürgi,et al.  Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. , 2006, Journal of the American Chemical Society.

[76]  H. Yao,et al.  Fivefold symmetry in superlattices of monolayer-protected gold nanoparticles. , 2006, The journal of physical chemistry. B.

[77]  Y. Negishi,et al.  Kinetic stabilization of growing gold clusters by passivation with thiolates. , 2006, The journal of physical chemistry. B.

[78]  Tatsuya Tsukuda,et al.  Chiroptical activity of BINAP-stabilized undecagold clusters. , 2006, The journal of physical chemistry. B.

[79]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[80]  Y. Negishi,et al.  Chromatographic isolation of "missing" Au55 clusters protected by alkanethiolates. , 2006, Journal of the American Chemical Society.

[81]  H. Nishihara,et al.  Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles , 2006 .

[82]  D. Sherrington,et al.  Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers. , 2005, Journal of the American Chemical Society.

[83]  S. Ivanov,et al.  Nanosized [Pd52(CO)36(PEt3)14] and [Pd66(CO)45(PEt3)16] clusters based on a hypothetical Pd38 vertex-truncated nu3 octahedron. , 2005, Angewandte Chemie.

[84]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[85]  R. Whetten,et al.  All-aromatic, nanometer-scale, gold-cluster thiolate complexes. , 2005, Journal of the American Chemical Society.

[86]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[87]  James E Hutchison,et al.  Thiol-functionalized undecagold clusters by ligand exchange: synthesis, mechanism, and properties. , 2005, Inorganic chemistry.

[88]  H. Sakurai,et al.  Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. , 2005, Journal of the American Chemical Society.

[89]  R. Murray,et al.  Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters , 2005 .

[90]  R. Kornberg,et al.  Thiolate ligands for synthesis of water-soluble gold clusters. , 2005, Journal of the American Chemical Society.

[91]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[92]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[93]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[94]  Leif O. Brown,et al.  Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. , 2005, Journal of the American Chemical Society.

[95]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[96]  H. Kojima,et al.  Interparticle spacing control in the superlattices of carboxylic acid-capped gold nanoparticles by hydrogen-bonding mediation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[97]  T. G. Schaaff Laser desorption and matrix-assisted laser desorption/ionization mass spectrometry of 29-kDa Au:SR cluster compounds. , 2004, Analytical chemistry.

[98]  A. Hernando,et al.  Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles. , 2004, Physical review letters.

[99]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[100]  Ryan J. White,et al.  Hexanethiolate monolayer protected 38 gold atom cluster. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[101]  A. Bard,et al.  Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. , 2004, Journal of the American Chemical Society.

[102]  Hiroshi Yao,et al.  Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39): Isolation and Spectroscopic Characterization , 2004 .

[103]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[104]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[105]  Dongil Lee,et al.  Synthesis and Isolation of the Molecule-like Cluster Au38(PhCH2CH2S)24 , 2004 .

[106]  P. Provencio,et al.  Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography , 2003 .

[107]  C. Noguez,et al.  Circular dichroism simulated spectra of chiral gold nanoclusters: A dipole approximation , 2003, cond-mat/0308552.

[108]  R. Murray,et al.  Estimation of Size for 1−2 nm Nanoparticles Using an HPLC Electrochemical Detector of Double Layer Charging , 2003 .

[109]  L. F. Dahl,et al.  Nanosized [Pd69(CO)36(PEt3)18]: metal-core geometry containing a linear assembly of three face-sharing centered Pd33 icosahedra inside of a hexagonal-shaped Pd30 tube. , 2003, Angewandte Chemie.

[110]  Y. Yamamoto,et al.  Diameter dependence of ferromagnetic spin moment in Au nanocrystals , 2003, cond-mat/0306261.

[111]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[112]  T. Inomata,et al.  Gold nanocluster confined within a cage: template-directed formation of a hexaporphyrin cage and its confinement capability. , 2003, Chemical communications.

[113]  K. Kontturi,et al.  Electrochemical resolution of 15 oxidation states for monolayer protected gold nanoparticles. , 2003, Journal of the American Chemical Society.

[114]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[115]  S. Hasegawa,et al.  Size Evolution of Alkanethiol-Protected Gold Nanoparticles by Heat Treatment in the Solid State , 2003 .

[116]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[117]  R. Murray,et al.  Voltammetry and electron-transfer dynamics in a molecular melt of a 1.2 nm metal quantum dot. , 2003, Journal of the American Chemical Society.

[118]  S. Ivanov,et al.  [Pd30(CO)26(PEt3)10] and [Pd54(CO)40(PEt3)14]: generation of nanosized Pd30- and Pd54-core geometries containing interpenetrating cuboctahedral-based metal polyhedra. , 2003, Angewandte Chemie.

[119]  R. Murray,et al.  HPLC of monolayer-protected gold nanoclusters. , 2003, Analytical chemistry.

[120]  Royce W Murray,et al.  Quantized double-layer charging of highly monodisperse metal nanoparticles. , 2002, Journal of the American Chemical Society.

[121]  M. G. Warner,et al.  Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions , 2002 .

[122]  Savka I. Stoeva,et al.  Digestive Ripening of Thiolated Gold Nanoparticles: The Effect of Alkyl Chain Length , 2002 .

[123]  M. Hara,et al.  An HREELS Study of Alkanethiol Self-Assembled Monolayers on Au(111) , 2002 .

[124]  I. Sigal,et al.  Chirality in bare and passivated gold nanoclusters , 2002, physics/0203078.

[125]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[126]  C. Sorensen,et al.  Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. , 2002, Journal of the American Chemical Society.

[127]  R. Whetten,et al.  Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound † , 2001 .

[128]  C. Mirkin,et al.  DNA-modified core-shell Ag/Au nanoparticles. , 2001, Journal of the American Chemical Society.

[129]  N. Majlis The Quantum Theory of Magnetism , 2001 .

[130]  D. Powell,et al.  Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three‐Shell 145‐Atom Metal‐Core Geometry of Pseudo Icosahedral Symmetry , 2000 .

[131]  S. Reed,et al.  Small, water-soluble, ligand-stabilized gold nanoparticles synthesized by interfacial ligand exchange reactions , 2000 .

[132]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[133]  James E. Martin,et al.  Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography , 2000 .

[134]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[135]  S. Yamada,et al.  Anomalous magnetic polarization effect of Pd and Au nano-particles , 1999 .

[136]  U. Simon,et al.  CLUSTERS ON CLUSTERS : CLOSO-DODECABORATE AS A LIGAND FOR AU55 CLUSTERS , 1999 .

[137]  Robert L. Whetten,et al.  Controlled Etching of Au:SR Cluster Compounds , 1999 .

[138]  Justin D. Debord,et al.  The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. , 1999, Analytical chemistry.

[139]  C. Sorensen,et al.  Formation and Dissolution of Gold Nanocrystal Superlattices in a Colloidal Solution , 1999 .

[140]  A. M. Alvarez,et al.  Crystal Structures of Molecular Gold Nanocrystal Arrays , 1999 .

[141]  R. Murray,et al.  Arenethiolate Monolayer-Protected Gold Clusters , 1999 .

[142]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[143]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[144]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[145]  R. Pugin,et al.  Silsesquioxanes as Ligands for Gold Clusters , 1998 .

[146]  J. Reilly,et al.  High-Resolution Time-of-Flight Mass Spectra of Alkanethiolate-Coated Gold Nanocrystals , 1998 .

[147]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[148]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[149]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[150]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[151]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[152]  R. Whetten,et al.  Critical sizes in the growth of Au clusters , 1997 .

[153]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[154]  R. Murray,et al.  Monolayers in Three Dimensions: Synthesis and Electrochemistry of ω-Functionalized Alkanethiolate-Stabilized Gold Cluster Compounds , 1996 .

[155]  M. Brust,et al.  Novel gold‐dithiol nano‐networks with non‐metallic electronic properties , 1995 .

[156]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[157]  Xiaobo Shi,et al.  Clusters of clusters. 25. Synthesis and structure of a new [gold-silver]-38-metal-atom cluster [(Ph3P)14Au18Ag20Cl12]Cl2 and its implications with regard to intracavity chemistry on metal cluster surfaces , 1993 .

[158]  Xiaobo Shi,et al.  Binary icosahedral clusters : atom and electron counting rules , 1993 .

[159]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[160]  R. Nuzzo,et al.  Synthesis, Structure, and Properties of Model Organic Surfaces , 1992 .

[161]  Xiaobo Shi,et al.  Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage , 1992 .

[162]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[163]  Xiaobo Shi,et al.  Cluster of clusters. Structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks , 1991 .

[164]  B. Teo,et al.  High nuclearity metal clusters: Miniature bulk of unusual structures and properties? , 1990 .

[165]  G. Whitesides,et al.  Modeling Organic Surfaces with Self‐Assembled Monolayers , 1989 .

[166]  K. Merzweiler,et al.  New Transition Metal Clusters with Ligands from Main Groups Five and Six , 1988 .

[167]  B. Teo,et al.  Cluster of Clusters: Structure of the 37‐Atom Cluster [(p‐Tol3P)12Au18Ag19Br11]2⊕ and a Novel Series of Supraclusters Based on Vertex‐Sharing Icosahedra , 1987 .

[168]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[169]  J. Turkevich,et al.  Colloidal gold. Part I , 1985 .

[170]  R. Kubo,et al.  Electronic Properties of Small Particles , 1984 .

[171]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[172]  J. Hainfeld,et al.  Biospecific labeling with undecagold: visualization of the biotin-binding site on avidin. , 1982, Science.

[173]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[174]  M. Manassero,et al.  Synthesis, structure, and stereochemical implication of the [Pt19(CO)12(.mu.2-CO)10]4- tetraanion: a bicapped triple-decker all-metal sandwich of idealized fivefold (D5h) geometry , 1979 .

[175]  P. Bartlett,et al.  Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems , 1978 .

[176]  K. Nobusada,et al.  Theoretical Investigation of Optimized Structures of Thiolated Gold Cluster [Au25(SCH3)18]+ , 2007 .

[177]  Irshad Hussain,et al.  Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[178]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[179]  C. Zhong,et al.  Size and shape evolution of core–shell nanocrystals , 1999 .

[180]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[181]  James E. Hutchison,et al.  Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters , 1995 .

[182]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[183]  A. Ulmann,et al.  An introduction to ultrathin organic films , 1991 .

[184]  G. Schmid Developments in transition metal cluster chemistry — The way to large clusters , 1985 .

[185]  D. Mingos,et al.  Synthesis and structural characterization of [Au9{P(p-C6H4OMe)3}8](BF4)3; a cluster with a centred crown of gold atoms , 1982 .

[186]  James W. White,et al.  Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction , 1981 .

[187]  W. P. Bosman,et al.  Synthesis and X-ray crystal structure determination of the cationic gold cluster compound [Au8(PPh3)7](NO3)2 , 1981 .

[188]  M. Manassero,et al.  Crystal and molecular structure of tri-iodoheptakis(tri-p-fluorophenylphosphine)undecagold , 1972 .

[189]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[190]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[191]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[192]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.