Nonequilibrium diagrammatic technique for Hubbard Green functions

We introduce diagrammatic technique for Hubbard nonequilibrium Green functions. The formulation is an extension of equilibrium considerations for strongly correlated lattice models to description of current carrying molecular junctions. Within the technique intra-system interactions are taken into account exactly, while molecular coupling to contacts is used as a small parameter in perturbative expansion. We demonstrate the viability of the approach with numerical simulations for a generic junction model of quantum dot coupled to two electron reservoirs.

[1]  Antti-Pekka Jauho,et al.  Inelastic transport theory from first principles: Methodology and application to nanoscale devices , 2006, cond-mat/0611562.

[2]  A. Seitsonen,et al.  Many-body transitions in a single molecule visualized by scanning tunnelling microscopy , 2015, Nature Physics.

[3]  R. Kiehl,et al.  Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions , 2006 .

[4]  Hong Guo,et al.  Ab initio analysis of electron-phonon coupling in molecular devices. , 2005, Physical review letters.

[5]  R. Xu,et al.  Dissipation equation of motion approach to open quantum systems , 2016 .

[6]  Yu. A. Izyumov,et al.  Statistical Mechanics of Magnetically Ordered Systems , 1988 .

[7]  I. Bâldea Invariance of molecular charge transport upon changes of extended molecule size and several related issues , 2016, Beilstein journal of nanotechnology.

[8]  H. Smith,et al.  Quantum field-theoretical methods in transport theory of metals , 1986 .

[9]  M. Ratner,et al.  Inelastic effects in molecular junctions in the Coulomb and Kondo regimes: Nonequilibrium equation-of-motion approach , 2007, 0705.2217.

[10]  M. Ratner,et al.  Comment on "Frequency-domain stimulated and spontaneous light emission signals at molecular junctions" [J. Chem. Phys. 141, 074107 (2014)]. , 2015, The Journal of chemical physics.

[11]  P. Liljeroth,et al.  Coherent electron–nuclear coupling in oligothiophene molecular wires , 2010 .

[12]  M. Yamashita,et al.  Observation and electric current control of a local spin in a single-molecule magnet , 2011, Nature communications.

[13]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[14]  Michael Galperin,et al.  Optical spectroscopy of molecular junctions: Nonequilibrium Green's functions perspective. , 2016, The Journal of chemical physics.

[15]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[16]  David E. Miller,et al.  Quantum Statistical Mechanics , 2002 .

[17]  J. Neaton,et al.  Control of single-molecule junction conductance of porphyrins via a transition-metal center. , 2014, Nano letters.

[18]  Leeor Kronik,et al.  Quasiparticle spectra from a nonempirical optimally tuned range-separated hybrid density functional. , 2012, Physical review letters.

[19]  O. Eriksson,et al.  Transport through quasi-degenerate states in coupled quantum dots , 2004 .

[20]  Pawel Danielewicz,et al.  Quantum theory of nonequilibrium processes, I , 1984 .

[21]  E. Beaurepaire,et al.  Giant magnetoresistance through a single molecule. , 2011, Nature nanotechnology.

[22]  I. Sandalov,et al.  Nonlinear transport at the strong intra-dot Coulomb interaction , 2006 .

[23]  N. Ogawa,et al.  Conductance Hysteresis and Switching in a Single-Molecule Junction , 2008 .

[24]  L. Venkataraman,et al.  Single-molecule junctions beyond electronic transport. , 2013, Nature nanotechnology.

[25]  W. Ho Single-molecule chemistry , 2002 .

[26]  Martin Eckstein,et al.  Nonequilibrium dynamical mean-field calculations based on the noncrossing approximation and its generalizations , 2010, 1005.1872.

[27]  An Introduction to Real-Time Renormalization Group , 1999, cond-mat/9909400.

[28]  D. Ahn,et al.  Transport theory of coupled quantum dots based on the auxiliary-operator method , 2010, 1010.1576.

[29]  D. Natelson,et al.  Nanogap structures: combining enhanced Raman spectroscopy and electronic transport. , 2013, Physical chemistry chemical physics : PCCP.

[30]  Michael Galperin,et al.  Collective Plasmon-Molecule Excitations in Nanojunctions: Quantum Consideration , 2012 .

[31]  Schoen,et al.  Mesoscopic quantum transport: Resonant tunneling in the presence of a strong Coulomb interaction. , 1994, Physical review. B, Condensed matter.

[32]  G. Cohen,et al.  Decoherence and lead-induced interdot coupling in nonequilibrium electron transport through interacting quantum dots: A hierarchical quantum master equation approach , 2013, 1309.1170.

[33]  Michael Y. Galperin,et al.  Nonequilibrium Atomic Limit for Transport and Optical Response of Molecular Junctions , 2014 .

[34]  K. Burke,et al.  Lack of Hohenberg-Kohn theorem for excited states. , 2004, Physical review letters.

[35]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[36]  O. Eriksson,et al.  Effects of non-orthogonality and electron correlations on the time-dependent current through quantum dots , 2002 .

[37]  J. Lehn,et al.  Conductance switching and vibrational fine structure of a [2 x 2] Co(II)(4) gridlike single molecule measured in a three-terminal device. , 2010, Small.

[38]  Mark A. Ratner,et al.  First-principles based matrix Green's function approach to molecular electronic devices: general formalism , 2002 .

[39]  Jonas Fransson,et al.  Non-Equilibrium Nano-Physics: A Many-Body Approach , 2010 .

[40]  P. Törmä,et al.  Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide. , 2010, ACS nano.

[41]  Michael Y. Galperin,et al.  Coherence in charge and energy transfer in molecular junctions , 2013 .

[42]  Conductance switching, hysteresis, and magnetoresistance in organic semiconductors , 2005, cond-mat/0508417.

[43]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[44]  Yijing Yan Theory of open quantum systems with bath of electrons and phonons and spins: many-dissipaton density matrixes approach. , 2014, The Journal of chemical physics.

[45]  First-principles analysis of molecular conduction using quantum chemistry software , 2002, cond-mat/0206551.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  E. Lörtscher,et al.  Reversible and controllable switching of a single-molecule junction. , 2006, Small.

[48]  T. Seideman,et al.  Current-driven dynamics in molecular-scale devices , 2003 .

[49]  Yijing Yan,et al.  Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach. , 2007, The Journal of chemical physics.

[50]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[51]  Michael Galperin,et al.  Raman scattering in molecular junctions: a pseudoparticle formulation. , 2014, Nano letters.

[52]  Michael Galperin,et al.  Inelastic transport: a pseudoparticle approach. , 2012, Physical chemistry chemical physics : PCCP.

[53]  N. Konstantinidis,et al.  Electric field controlled magnetic anisotropy in a single molecule. , 2010, Nano letters.

[54]  Hideo Aoki,et al.  Nonequilibrium dynamical mean-field theory and its applications , 2013, 1310.5329.

[55]  T. Frederiksen,et al.  Inelastic shot noise characteristics of nanoscale junctions from first principles , 2012, 1209.3599.

[56]  Andrew G. Glen,et al.  APPL , 2001 .

[57]  A. Wacker,et al.  Interplay between interference and Coulomb interaction in the ferromagnetic Anderson model with applied magnetic field , 2008, 0810.5293.

[58]  M. Ratner,et al.  Inelastic transport in the Coulomb blockade regime within a nonequilibrium atomic limit , 2008 .

[59]  Michael Galperin,et al.  Simulation of optical response functions in molecular junctions. , 2016, The Journal of chemical physics.

[60]  Meir,et al.  Anderson model out of equilibrium: Noncrossing-approximation approach to transport through a quantum dot. , 1994, Physical review. B, Condensed matter.

[61]  R. Baer,et al.  Density functional theory with correct long-range asymptotic behavior. , 2004, Physical review letters.

[62]  P. Liljeroth,et al.  Charge transport through molecular switches , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[63]  Roi Baer On the mapping of time-dependent densities onto potentials in quantum mechanics. , 2008, The Journal of chemical physics.

[64]  E. Scheer,et al.  A current-driven single-atom memory. , 2013, Nature nanotechnology.

[65]  R. Xu,et al.  HEOM‐QUICK: a program for accurate, efficient, and universal characterization of strongly correlated quantum impurity systems , 2016 .

[66]  Current collapse in tunneling transport through benzene. , 2002, Physical review letters.

[67]  Mark Ratner,et al.  A brief history of molecular electronics. , 2013, Nature nanotechnology.

[68]  C. H. Patterson,et al.  Molecularly inherent voltage-controlled conductance switching , 2005, Nature materials.

[69]  Philipp Leinen,et al.  Scanning Quantum Dot Microscopy. , 2015, Physical review letters.

[70]  M. Leijnse,et al.  Kinetic equations for transport through single-molecule transistors , 2008, 0807.4027.

[71]  M. Esposito,et al.  Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems , 2008, 0811.3717.

[72]  R. Baer,et al.  A well-tempered density functional theory of electrons in molecules. , 2007, Physical chemistry chemical physics : PCCP.

[73]  R. Baer,et al.  Gate-Induced Intramolecular Charge Transfer in a Tunnel Junction: A Nonequilibrium Analysis , 2013 .

[74]  Luigi Cavallo,et al.  The Journal of Chemical Physics 144, 134702 (2016) SupInfo , 2016 .

[75]  M. Hell,et al.  Spintronic magnetic anisotropy , 2013, Nature Physics.

[76]  D. Reichman,et al.  Anderson-Holstein model in two flavors of the noncrossing approximation , 2016, 1601.05755.

[77]  M. Ratner,et al.  On optical spectroscopy of molecular junctions , 2015, 1503.03890.

[78]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[79]  J. Fransson Nonequilibrium theory for a quantum dot with arbitrary on-site correlation strength coupled to leads , 2005 .

[80]  S. V. D. Molen Single-atom switches: Toggled with electrical current , 2013 .

[81]  I. Sandalov,et al.  Shell effects in nonlinear magnetotransport through small quantum dots , 2007 .

[82]  M. Ratner,et al.  Transport in state space: voltage-dependent conductance calculations of benzene-1,4-dithiol. , 2009, Nano letters.

[83]  W. Wenzel,et al.  Applying the extended molecule approach to correlated electron transport: Important insight from model calculations. , 2010, The Journal of chemical physics.

[84]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.