Long-Term Evolution of Massive Black Hole Binaries

The long-term evolution of massive black hole binaries at the centers of galaxies is studied in a variety of physical regimes, with the aim of resolving the "final parsec problem," i.e., how black hole binaries manage to shrink to separations at which emission of gravity waves becomes efficient. A binary ejects stars by the gravitational slingshot and carves out a loss cone in the host galaxy. Continued decay of the binary requires a refilling of the loss cone. We show that the standard treatment of loss cone refilling, derived for collisionally relaxed systems like globular clusters, can substantially underestimate the refilling rates in galactic nuclei. We derive expressions for nonequilibrium loss cone dynamics and calculate timescales for the decay of massive black hole binaries following galaxy mergers, obtaining significantly higher decay rates than heretofore. Even in the absence of two-body relaxation, decay of binaries can persist as a result of repeated ejection of stars returning to the nucleus on eccentric orbits. We show that this recycling of stars leads to a gradual, approximately logarithmic dependence of the binary binding energy on time. We derive an expression for the loss cone refilling induced by the Brownian motion of a black hole binary. We also show that numerical N-body experiments are not well suited to probe these mechanisms over long times as a result of spurious relaxation.

[1]  D. Thompson,et al.  The First Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole: A Paradox of Youth , 2003, astro-ph/0302299.

[2]  T. Lauer,et al.  Hubble Space Telescope Imaging of Brightest Cluster Galaxies , 2002, astro-ph/0211074.

[3]  R. Ekers,et al.  Tracing Black Hole Mergers Through Radio Lobe Morphology , 2002, Science.

[4]  Heon-Young Chang,et al.  Current High Energy Emission Around Black Holes , 2002 .

[5]  L. Ferrarese Beyond the Bulge: A Fundamental Relation between Supermassive Black Holes and Dark Matter Halos , 2002, astro-ph/0203469.

[6]  O. Blaes,et al.  The Kozai Mechanism and the Evolution of Binary Supermassive Black Holes , 2002, astro-ph/0203370.

[7]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[8]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[9]  D. Merritt,et al.  Triaxial Black Hole Nuclei , 2001, astro-ph/0111020.

[10]  Qingjuan Yu Evolution of massive binary black holes , 2001, astro-ph/0109530.

[11]  L. Hernquist,et al.  Dynamics of a Massive Black Hole at the Center of a Dense Stellar System , 2001, astro-ph/0107287.

[12]  David Merritt,et al.  Systolic and Hyper-Systolic Algorithms for the Gravitational N-Body Problem, with an Application to Brownian Motion , 2001, ArXiv.

[13]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[14]  H. Ford,et al.  WFPC2 Images of the Central Regions of Early-Type Galaxies. I. The Data , 2001, astro-ph/0102286.

[15]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[16]  D. Merritt,et al.  Brownian Motion of a Massive Binary , 2000, astro-ph/0012264.

[17]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[18]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[19]  J. Graham,et al.  2 Micron Spectroscopy within 0.″3 of Sagittarius A* , 2000 .

[20]  G. Mamon,et al.  Dynamics of Galaxies: From the Early Universe to the Present , 2000 .

[21]  H. Rix,et al.  Binary Black Hole Mergers from Planet-like Migrations , 1999, The Astrophysical journal.

[22]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[23]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[24]  D. Backer,et al.  Proper Motion of the Compact, Nonthermal Radio Source in the Galactic Center, Sagittarius A* , 1999, astro-ph/9906048.

[25]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[26]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[27]  J. Makino Merging of Galaxies with Central Black Holes. II. Evolution of the Black Hole Binary and the Structure of the Core , 1996, astro-ph/9608161.

[28]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[29]  S. Tremaine,et al.  The centers of early-type galaxies with HST. IV. Central parameter relations , 1996, astro-ph/9610055.

[30]  S. Tremaine,et al.  The Centers of Early-Type Galaxies with HST III: Non-Parametric Recovery of Stellar Luminosity Distributions , 1996, astro-ph/9604092.

[31]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[32]  M. Valtonen Triple black hole systems formed in mergers of galaxies , 1996 .

[33]  Toshikazu Ebisuzaki,et al.  Triple black holes in the cores of galaxies , 1994 .

[34]  H. Ford,et al.  Hubble Space Telescope photometry of the central regions of Virgo cluster elliptical galaxies. 3: Brightness profiles , 1994 .

[35]  M. Haehnelt Low-frequency gravitational waves from supermassive black holes , 1994, astro-ph/9405032.

[36]  M. Begelman,et al.  The fuelling of active galactic nuclei , 1990, Nature.

[37]  M. Valtonen,et al.  Binary pairs of supermassive black holes: formation in merging galaxies , 1989 .

[38]  J. Binney,et al.  The diffusion of stars through phase space , 1988 .

[39]  W. Jaffe A SIMPLE-MODEL FOR THE DISTRIBUTION OF LIGHT IN SPHERICAL GALAXIES , 1983 .

[40]  M. Rees,et al.  Massive black hole binaries in active galactic nuclei , 1980, Nature.

[41]  R. Kulsrud,et al.  Stellar distribution around a black hole: Numerical integration of the Fokker-Planck equation , 1978 .

[42]  J. Ipser Distribution of stars around a massive central black hole in a spherical stellar system. I. Results for test stars with a unique mass and radius , 1978 .

[43]  P. J. Young Stellar density cusp around a massive black hole , 1977 .

[44]  S. Shapiro,et al.  The distribution and consumption rate of stars around a massive, collapsed object , 1977 .

[45]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[46]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[47]  K. Thorne,et al.  Gravitational-wave bursts from the nuclei of distant galaxies and quasars: proposal for detection using Doppler tracking of interplanetary spacecraft , 1976 .

[48]  Mauri J. Valtonen,et al.  The gravitational slingshot and the structure of extragalactic radio sources , 1974 .

[49]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[50]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[51]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[52]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[53]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .