Wireless monitoring of the longitudinal displacement of the Tamar Suspension Bridge deck under changing environmental conditions

In order to be able to monitor the performance and health of a civil structure it is essential to understand how it behaves under different environmental conditions. It is a well documented fact that the structural performance of bridges can be altered considerably when they are subjected to changes in environmental conditions. This paper presents a study investigating the longitudinal movement of the road deck on Tamar Suspension Bridge in Plymouth in the UK over six months. The expansion joint of the bridge deck was instrumented with pull-wire type extensometers. The data were transmitted wirelessly using commercial wireless sensor nodes and collected at a data acquisition laptop computer, which was accessible online for remote monitoring. In addition, position data of various locations on the bridge deck were collected using a Robotic Total Station (RTS). Environmental data, such as the temperature, and structural data, such as cable tension, were acquired from other monitoring systems. Conclusions drawn from a fusion of the bridge deck's longitudinal displacement with other structural and environmental data are discussed in this paper.