Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda.

[1]  N. Magan,et al.  Hydro- and thermotimes for conidial germination kinetics of the ochratoxigenic species Aspergillus carbonarius in vitro, on grape skin and grape flesh. , 2014, Fungal biology.

[2]  Kellene M. Bergen,et al.  Factors affecting host range in a generalist seed pathogen of semi-arid shrublands , 2014, Plant Ecology.

[3]  S. Meyer,et al.  Indirect effects of an invasive annual grass on seed fates of two native perennial grass species , 2014, Oecologia.

[4]  S. Meyer,et al.  Environmental factors influencing Pyrenophora semeniperda-caused seed mortality in Bromus tectorum , 2012, Seed Science Research.

[5]  K. Koutsoumanis,et al.  Modeling germination of fungal spores at constant and fluctuating temperature conditions. , 2012, International journal of food microbiology.

[6]  Tian-gui Niu,et al.  Modeling the Effect of Temperature and Water Activity on the Growth Rate and Lag Phase of Aspergillus flavus during Rice Drying , 2011 .

[7]  Philippe Dantigny,et al.  A new model for germination of fungi. , 2011, International journal of food microbiology.

[8]  M. Jijakli,et al.  Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes) , 2011, Journal of applied microbiology.

[9]  S. Meyer,et al.  The quick and the deadly: growth vs virulence in a seed bank pathogen. , 2010, The New phytologist.

[10]  K. Koutsoumanis,et al.  Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions. , 2010, International journal of food microbiology.

[11]  M. Watt,et al.  Development of a hydrothermal time seed germination model which uses the Weibull distribution to describe base water potential , 2010 .

[12]  S. Meyer,et al.  Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models , 2009, Seed Science Research.

[13]  K. Bradford,et al.  Modeling of Seed Dormancy , 2007 .

[14]  F. Chen,et al.  Mechanisms and Genes Involved in Germination Sensu Stricto , 2007 .

[15]  Naresh Magan,et al.  Mould germination: data treatment and modelling. , 2007, International journal of food microbiology.

[16]  K. Bradford,et al.  Seed development, dormancy and germination , 2007 .

[17]  N. Magan,et al.  Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi. , 2006, Environmental microbiology.

[18]  P. Alpert Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? , 2006, Journal of Experimental Biology.

[19]  S. Meyer,et al.  A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. , 2006, Seed Science Research.

[20]  B. Meulenaer,et al.  Predictive modelling of the individual and combined effect of water activity and temperature on the radial growth of Fusarium verticilliodes and F. proliferatum on corn. , 2005, International journal of food microbiology.

[21]  M. Jijakli,et al.  Studying and modelling the combined effect of temperature and water activity on the growth rate of P. expansum. , 2005, International journal of food microbiology.

[22]  Philippe Dantigny,et al.  Basis of predictive mycology. , 2005, International journal of food microbiology.

[23]  K. Bradford Threshold models applied to seed germination ecology. , 2005, The New phytologist.

[24]  N. Magan,et al.  Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols in Fusarium graminearum , 2004, Mycologia.

[25]  P. Allen When and how many? Hydrothermal models and the prediction of seed germination , 2003 .

[26]  S. Marín,et al.  SEM study of water activity and temperature effects on the initial growth of Aspergillus ochraceus, Alternaria alternata and Fusarium verticillioides on maize grain. Scanning electron microscopy. , 2003, International journal of food microbiology.

[27]  Kent J. Bradford,et al.  A hydrothermal time model explains the cardinal temperatures for seed germination , 2002 .

[28]  Kent J. Bradford,et al.  Applications of hydrothermal time to quantifying and modeling seed germination and dormancy , 2002, Weed Science.

[29]  P. Dantigny,et al.  A temperature-type model for describing the relationship between fungal growth and water activity. , 2001, International journal of food microbiology.

[30]  P. Dantigny,et al.  Prediction of conidial germination of Penicillium chrysogenum as influenced by temperature, water activity and pH , 2001, Letters in applied microbiology.

[31]  L Rosso,et al.  A cardinal model to describe the effect of water activity on the growth of moulds. , 2001, International journal of food microbiology.

[32]  Susan E. Meyer,et al.  Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides , 2000, Seed Science Research.

[33]  S. Marín,et al.  Effect of water activity and temperature on growth and ochratoxin production by three strains of Aspergillus ochraceus on a barley extract medium and on barley grains. , 1998, International journal of food microbiology.

[34]  S. Meyer,et al.  A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. , 1998 .

[35]  S. Meyer,et al.  A hydrothermal time model of seed after-ripening in Bromus tectorum L. , 1996, Seed Science Research.

[36]  S. Marín,et al.  Water and temperature relations and microconidial germination of Fusarium moniliforme and Fusarium proliferatum from maize. , 1996, Canadian journal of microbiology.

[37]  S. Marín,et al.  Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. , 1995, Canadian journal of microbiology.

[38]  J Baranyi,et al.  A dynamic approach to predicting bacterial growth in food. , 1994, International journal of food microbiology.

[39]  J P Flandrois,et al.  An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. , 1993, Journal of theoretical biology.

[40]  K van't Riet,et al.  Modeling of bacterial growth as a function of temperature , 1991, Applied and environmental microbiology.

[41]  K. Bradford A water relations analysis of seed germination rates. , 1990, Plant physiology.

[42]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[43]  K. Davey,et al.  A predictive model for combined temperature and water activity on microbial growth during the growth phase. , 1989, The Journal of applied bacteriology.

[44]  E. H. Roberts,et al.  The Influence of Temperature on Seed Germination Rate in Grain Legumes I. A COMPARISON OF CHICKPEA, LENTIL, SOYABEAN AND COWPEA AT CONSTANT TEMPERATURES , 1986 .

[45]  R. J. Gummerson The Effect of Constant Temperatures and Osmotic Potentials on the Germination of Sugar Beet , 1986 .

[46]  A. N. Stokes,et al.  Model for bacterial culture growth rate throughout the entire biokinetic temperature range , 1983, Journal of bacteriology.

[47]  J. L. Monteith,et al.  Time, Temperature and Germination of Pearl Millet (Pennisetum typhoides S. & H.) II. ALTERNATING TEMPERATURE , 1982 .

[48]  R. F. Harris,et al.  Fungal Growth Responses to Osmotic as Compared to Matric Water Potential 1 , 1971 .

[49]  H. Finch The Bromus tectorum-Pyrenophora semeniperda Pathosystem , 2013 .