Modelling Polysemy in Adjective Classes by Multi-Label Classification

This paper assesses the role of multi-label classification in modelling polysemy for language acquisition tasks. We focus on the acquisition of semantic classes for Catalan adjectives, and show that polysemy acquisition naturally suits architectures used for multilabel classification. Furthermore, we explore the performance of information drawn from different levels of linguistic description, using feature sets based on morphology, syntax, semantics, and n-gram distribution. Finally, we demonstrate that ensemble classifiers are a powerful and adequate way to combine different types of linguistic evidence: a simple, majority voting ensemble classifier improves the accuracy from 62.5% (best single classifier) to 84%.

[1]  Yuval Krymolowski,et al.  Clustering Polysemic Subcategorization Frame Distributions Semantically , 2003, ACL.

[2]  Gemma Boleda,et al.  Acquisition of Semantic Classes for Adjectives from Distributional Evidence , 2004, COLING.

[3]  Eneko Agirre,et al.  Combining Unsupervised Lexical Knowledge Methods for Word Sense Disambiguation , 1997, ACL.

[4]  Gemma Boleda,et al.  Morphology vs. Syntax in Adjective Class Acquisition , 2005, ACL 2005.

[5]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[6]  Michael G. Dyer,et al.  Word Sense Disambiguation of Adjectives Using Probabilistic Networks , 2000, COLING.

[7]  Ted Briscoe,et al.  Automatic Acquisition of Adjectival Subcategorization from Corpora , 2005, ACL.

[8]  Vasileios Hatzivassiloglou,et al.  Towards the Automatic Identification of Adjectival Scales: Clustering Adjectives According to Meaning , 1993, ACL.

[9]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[10]  Remco R. Bouckaert,et al.  Estimating replicability of classifier learning experiments , 2004, ICML.

[11]  Thomas G. Dietterich An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization , 2000, Machine Learning.

[12]  Sergei Nirenburg,et al.  Book Review: Ontological Semantics, by Sergei Nirenburg and Victor Raskin , 2004, CL.

[13]  MerloPaola,et al.  Automatic verb classification based on statistical distributions of argument structure , 2001 .

[14]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[15]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[16]  Janyce Wiebe,et al.  Effects of Adjective Orientation and Gradability on Sentence Subjectivity , 2000, COLING.

[17]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[20]  Slava M. Katz,et al.  Principled Disambiguation: Discriminating Adjective Senses with Modified Nouns , 1995, CL.

[21]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[22]  Thorsten Brants,et al.  Inter-annotator Agreement for a German Newspaper Corpus , 2000, LREC.

[23]  Maria Lapata,et al.  A Corpus-based Account of Regular Polysemy: The Case of Context-sensitive Adjectives , 2001, NAACL.

[24]  Mats Rooth,et al.  Inducing a Semantically Annotated Lexicon via EM-Based Clustering , 1999, ACL.

[25]  Hans van Halteren,et al.  Improving Data Driven Wordclass Tagging by System Combination , 1998, ACL.

[26]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[27]  Naftali Tishby,et al.  Distributional Clustering of English Words , 1993, ACL.

[28]  Koby Crammer,et al.  Flexible Text Segmentation with Structured Multilabel Classification , 2005, HLT.

[29]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[30]  Yoshua Bengio,et al.  Inference for the Generalization Error , 1999, Machine Learning.

[31]  Gemma Boleda,et al.  CATCG: a general purpose parsing tool applied , 2002, LREC.

[32]  Sergei Nirenburg,et al.  An Applied Ontological Semantic Microtheory of Adjective Meaning for Natural Language Processing , 1998, Machine Translation.

[33]  Vasileios Hatzivassiloglou,et al.  Predicting the Semantic Orientation of Adjectives , 1997, ACL.

[34]  Suzanne Stevenson,et al.  Semi-supervised Verb Class Discovery Using Noisy Features , 2003, CoNLL.

[35]  Suzanne Stevenson,et al.  Automatic Verb Classification Based on Statistical Distributions of Argument Structure , 2001, CL.

[36]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.