On the approximation of the quadratic exponential distribution in a latent variable context

Following Cox & Wermuth (1994, 2002), we show that the distribution of a set of binary observable variables, induced by a certain discrete latent variable model, may be approximated by a quadratic exponential distribution. This discrete latent variable model is equivalent to the latent-class version of the two-parameter logistic model of Birnbaum (1968), which may be seen as a generalized version of the Rasch model (Rasch, 1960, 196). On the basis of this result, we develop an approximate maximum likelihood estimator of the item parameters of the two-parameter logistic model which is very simply implemented. The proposed approach is illustrated through an example based on a dataset on educational assessment. Copyright 2007, Oxford University Press.

[1]  J. Neyman,et al.  Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability , 1963 .

[2]  Francesco Bartolucci,et al.  Likelihood inference on the underlying structure of IRT models , 2005 .

[3]  D. Cox The Analysis of Multivariate Binary Data , 1972 .

[4]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[5]  Jeroen K. Vermunt,et al.  3. Log-Multiplicative Association Models as Latent Variable Models for Nominal and/or Ordinal Data , 2000 .

[6]  E. B. Andersen,et al.  Asymptotic Properties of Conditional Maximum‐Likelihood Estimators , 1970 .

[7]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[8]  R. Hambleton,et al.  Item Response Theory: Principles and Applications , 1984 .

[9]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[10]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[11]  David Thissen,et al.  Item Response Theory with Estimation of the Latent Population Distribution Using Spline-Based Densities , 2006, Psychometrika.

[12]  Nanny Wermuth,et al.  On some models for multivariate binary variables parallel in complexity with the multivariate Gaussian distribution , 2002 .

[13]  G. Rasch On General Laws and the Meaning of Measurement in Psychology , 1961 .

[14]  Nanny Wermuth,et al.  A note on the quadratic exponential binary distribution , 1994 .

[15]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[16]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[17]  F. Baker,et al.  Item response theory : parameter estimation techniques , 1993 .

[18]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[19]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[20]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[21]  Norman Verhelst,et al.  Maximum Likelihood Estimation in Generalized Rasch Models , 1986 .

[22]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[23]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[24]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[25]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[26]  Francesco Bartolucci,et al.  A class of multidimensional IRT models for testing unidimensionality and clustering items , 2007 .

[27]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[28]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[29]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[30]  Neil Henry Latent structure analysis , 1969 .