High-resolution multifluid simulations of flux ropes in the Martian magnetosphere

[1] Three-dimensional multifluid simulations of the Martian magnetosphere show the development and dynamics of flux ropes. One flux rope, which is analyzed in detail, initiates at a reconnection region near the dusk terminator and travels tailward with a speed on the order of 40 km s−1. The reconnection region forms close to the planet at an altitude of 700 km. Both the location of the reconnection and energy spectra of the plasma in the reconnection region agree with Mars Global Surveyor observations of reconnection. The largest flux ropes have a spatial extent on the order of 2000 km. Energy spectra taken through the flux ropes show an inverted-V type structure similar to those measured by Mars Express, suggesting that some inverted-V observations may be transits through flux ropes. The simulations indicate that the formation of flux ropes can lead to enhanced loss of heavy ions from the atmosphere.

[1]  M. Shay,et al.  Formation of Electron Holes and Particle Energization During Magnetic Reconnection , 2003, Science.

[2]  S. Bale,et al.  Evidence for electron acceleration up to approximately 300 keV in the magnetic reconnection diffusion region of earth's magnetotail. , 2002, Physical review letters.

[3]  D. Mitchell,et al.  Electron pitch angle distributions as indicators of magnetic field topology near Mars , 2007 .

[4]  C. Russell,et al.  Structure of the magnetic pileup boundary at Mars and Venus , 2005 .

[5]  A. Stickle,et al.  Multiscale/multifluid simulations of flux ropes at the magnetopause within a global magnetospheric model , 2008 .

[6]  R. M. Winglee,et al.  High-resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies , 2007 .

[7]  A. Stickle,et al.  Model/data comparisons of ionospheric outflow as a function of invariant latitude and magnetic local time , 2008 .

[8]  R. Lysak,et al.  Satellite measurements and theories of low altitude auroral particle acceleration , 1980 .

[9]  D. Mitchell,et al.  Variability of the altitude of the Martian sheath , 2005 .

[10]  D. Mitchell,et al.  Observations of the latitude dependence of the location of the martian magnetic pileup boundary , 2002 .

[11]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[12]  D. Mitchell,et al.  Current sheets at low altitudes in the Martian magnetotail , 2006 .

[13]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[14]  D. Mitchell,et al.  On the origin of aurorae on Mars , 2006 .

[15]  David Andrew Brain,et al.  Mars Global Surveyor Measurements of the Martian Solar Wind Interaction , 2007 .

[16]  Peter A. Delamere,et al.  Three‐dimensional multi‐fluid simulations of Pluto's magnetosphere: A comparison to 3D hybrid simulations , 2005 .

[17]  E. Harnett,et al.  Multi‐scale/multi‐fluid simulations of the post plasmoid current sheet in the terrestrial magnetosphere , 2006 .

[18]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[19]  Robert M. Winglee,et al.  Ion cyclotron and heavy ion effects on reconnection in a global magnetotail , 2004 .

[20]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[21]  D. Mitchell,et al.  Evidence for collisionless magnetic reconnection at Mars , 2007 .

[22]  R. Winglee,et al.  The role of ion cyclotron motion at Ganymede: Magnetic field morphology and magnetospheric dynamics , 2006 .

[23]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[24]  Robert M. Winglee,et al.  Three‐dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events , 2006 .

[25]  R. Hoffman,et al.  Observations of inverted-V electron precipitation , 1982 .

[26]  S. Brecht Hybrid simulations of the magnetic topology of Mars , 1997 .

[27]  S. Barabash,et al.  Plasma Acceleration Above Martian Magnetic Anomalies , 2006, Science.

[28]  H. Hayakawa,et al.  Auroral Plasma Acceleration Above Martian Magnetic Anomalies , 2007 .

[29]  C. Owen,et al.  Geotail observations of magnetic flux ropes in the plasma sheet , 2003 .

[30]  S. Bale,et al.  Evidence for Electron Acceleration up to ~300 keV in the Magnetic Reconnection Diffusion Region of the Earth's Magnetotail , 2002 .

[31]  S. Barabash,et al.  Oxygen outflow in the Martian magnetotail , 1995 .

[32]  David L. Mitchell,et al.  The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor , 2000 .

[33]  D. Mitchell,et al.  Venus‐like interaction of the solar wind with Mars , 1999 .

[34]  J. Cain,et al.  An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .