Micropulse water vapor differential absorption lidar: transmitter design and performance.

An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

[1]  David J. Bossert,et al.  Filamentation in high-power tapered semiconductor amplifiers , 1997, Photonics West.

[2]  Amin R. Nehrir,et al.  Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (mp-DIAL) for atmospheric water-vapor and aerosol studies , 2011 .

[3]  W B Grant,et al.  Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. , 1994, Applied optics.

[4]  Kevin S. Repasky,et al.  Eye-Safe Diode-Laser-Based Micropulse Differential Absorption Lidar (DIAL) for Water Vapor Profiling in the Lower Troposphere , 2011 .

[5]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[6]  Tom Ayers,et al.  Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. , 2004, Applied optics.

[7]  H. Metcalf,et al.  Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings. , 1985, Applied optics.

[8]  James D. Spinhirne,et al.  Micro pulse lidar , 1993, IEEE Trans. Geosci. Remote. Sens..

[9]  C. W. Smith,et al.  Laser diode facet modal reflectivity measurements. , 2000, Applied optics.

[10]  G. Poberaj,et al.  Diode-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere and lower stratosphere , 1998 .

[11]  Michael D. Obland,et al.  Water vapor profiling using a widely tunable amplified diode laser Differential Absorption Lidar (DIAL) , 2009 .

[12]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[13]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[14]  C. Walther,et al.  Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory. , 2001, Applied optics.

[15]  James C. Barnes,et al.  Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument , 1997 .

[16]  Coorg R. Prasad,et al.  A diode-pumped Cr:LiSAF laser for UAV-based water vapor differential absorption lidar (DIAL) , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[17]  J. Bösenberg,et al.  Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. , 1998, Applied optics.

[18]  J. Reagan,et al.  Optical characterization of continental and biomass‐burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect , 2011 .

[19]  E V Browell,et al.  Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region. , 1991, Applied optics.

[20]  William B. Grant,et al.  Differential absorption lidar (DIAL) measurements from air and space , 1998 .

[21]  Norman P. Barnes,et al.  High-energy Q-switched 0.946-mum solid-state diode pumped laser , 2002 .