Neural mechanisms underlying sensitivity to reverse-phi motion in the fly

Optical illusions provide powerful tools for mapping the algorithms and circuits that underlie visual processing, revealing structure through atypical function. Of particular note in the study of motion detection has been the reverse-phi illusion. When contrast reversals accompany discrete movement, detected direction tends to invert. This occurs across a wide range of organisms, spanning humans and invertebrates. Here, we map an algorithmic account of the phenomenon onto neural circuitry in the fruit fly Drosophila melanogaster. Through targeted silencing experiments in tethered walking flies as well as electrophysiology and calcium imaging, we demonstrate that ON- or OFF-selective local motion detector cells T4 and T5 are sensitive to certain interactions between ON and OFF. A biologically plausible detector model accounts for subtle features of this particular form of illusory motion reversal, like the re-inversion of turning responses occurring at extreme stimulus velocities. In light of comparable circuit architecture in the mammalian retina, we suggest that similar mechanisms may apply even to human psychophysics.

[1]  David R. Badcock,et al.  Global motion perception: Interaction of the ON and OFF pathways , 1994, Vision Research.

[2]  Ian A. Meinertzhagen,et al.  Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.

[3]  Matthew S. Creamer,et al.  Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning , 2016, Neuron.

[4]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  A. Borst,et al.  Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector , 2015, Current Biology.

[6]  Alexander Borst,et al.  Flight Activity Alters Velocity Tuning of Fly Motion-Sensitive Neurons , 2011, The Journal of Neuroscience.

[7]  Alexander Borst,et al.  Optogenetic Control of Fly Optomotor Responses , 2013, The Journal of Neuroscience.

[8]  A. Borst,et al.  Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.

[9]  Shin'ya Nishida,et al.  Contrast-reversing global-motion stimuli reveal local interactions between first- and second-order motion signals , 2004, Vision Research.

[10]  Louis K. Scheffer,et al.  Synaptic circuits and their variations within different columns in the visual system of Drosophila , 2015, Proceedings of the National Academy of Sciences.

[11]  P. McOwan,et al.  Perception of motion direction in luminance-and contrast-defined reversed-phi motion sequences , 1997, Vision Research.

[12]  S. Anstis,et al.  Illusory reversal of visual depth and movement during changes of contrast , 1975, Vision Research.

[13]  Gerald M Rubin,et al.  Using translational enhancers to increase transgene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.

[14]  Siddharth Jain,et al.  Performance Characterization of Watson Ahumada Motion Detector Using Random Dot Rotary Motion Stimuli , 2009, PloS one.

[15]  M Egelhaaf,et al.  Are there separate ON and OFF channels in fly motion vision? , 1992, Visual Neuroscience.

[16]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[17]  Michael B. Reiser,et al.  The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila , 2017, Neuron.

[18]  Michael B. Reiser,et al.  Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.

[19]  M. Ibbotson,et al.  Interactions between ON and OFF signals in directional motion detectors feeding the not of the wallaby. , 2001, Journal of neurophysiology.

[20]  Julie H. Simpson,et al.  Genetic Manipulation of Genes and Cells in the Nervous System of the Fruit Fly , 2011, Neuron.

[21]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[22]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[23]  Damon A. Clark,et al.  Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.

[24]  Michael B. Reiser,et al.  Neural correlates of illusory motion perception in Drosophila , 2011, Proceedings of the National Academy of Sciences.

[25]  Christof Koch,et al.  Modeling Reverse-Phi Motion-Selective Neurons in Cortex: Double Synaptic-Veto Mechanism , 2003, Neural Computation.

[26]  Damon A. Clark,et al.  Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.

[27]  Alexander Borst,et al.  Optogenetic and Pharmacologic Dissection of Feedforward Inhibition in Drosophila Motion Vision , 2014, The Journal of Neuroscience.

[28]  A. Borst,et al.  Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector , 2016, Neuron.

[29]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[30]  Alexander Borst,et al.  ON and OFF pathways in Drosophila motion vision , 2010, Nature.

[31]  Andrea Pavan,et al.  Rapid Motion Adaptation Reveals the Temporal Dynamics of Spatiotemporal Correlation between ON and OFF Pathways , 2016, Scientific Reports.

[32]  T. Albright,et al.  Motion mechanisms in macaque MT. , 2005, Journal of neurophysiology.

[33]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[34]  Justin M. Ales,et al.  Flies and humans share a motion estimation strategy that exploits natural scene statistics , 2014, Nature Neuroscience.

[35]  A. Borst,et al.  What kind of movement detector is triggering the landing response of the housefly? , 1986, Biological Cybernetics.

[36]  M. Dickinson,et al.  Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.

[37]  A. Borst,et al.  Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation , 2016, Nature Neuroscience.

[38]  Alexander Borst,et al.  Neural Circuit to Integrate Opposing Motions in the Visual Field , 2015, Cell.

[39]  Qin Hu,et al.  A set of high-order spatiotemporal stimuli that elicit motion and reverse-phi percepts. , 2010, Journal of vision.

[40]  A. Borst,et al.  Common circuit design in fly and mammalian motion vision , 2015, Nature Neuroscience.

[41]  Michael S. Drews,et al.  The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements , 2017, Current Biology.

[42]  S. M. Axstis PHI MOVEMENT AS A SUBTRACTION PROCESS , 1970 .

[43]  G Sperling,et al.  Second-order reversed phi , 1999, Perception & psychophysics.

[44]  P. Cavanagh,et al.  ISI produces reverse apparent motion , 1990, Vision Research.

[45]  Kazushi Maruya,et al.  Reversed-phi perception with motion-defined motion stimuli , 2003, Vision Research.

[46]  Damon A. Clark,et al.  Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.

[47]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[48]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[49]  Aijaz A. Baloch,et al.  Neural model of first-order and second-order motion perception and magnocellular dynamics. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[51]  A. Borst,et al.  Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.

[52]  G Sperling,et al.  Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[54]  Takao Sato,et al.  Reversed apparent motion with random dot patterns , 1989, Vision Research.

[55]  Alexander Borst,et al.  Object tracking in motion-blind flies , 2013, Nature Neuroscience.

[56]  Christian Wehrhahn,et al.  Reversed phi revisited. , 2006, Journal of vision.

[57]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[58]  B Schnell,et al.  Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.

[59]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[60]  A. Borst,et al.  Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.

[61]  G. Rubin,et al.  A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.

[62]  Alexander Borst,et al.  Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.

[63]  A. Borst,et al.  Neural Mechanisms for Drosophila Contrast Vision , 2015, Neuron.

[64]  Matthew C Smear,et al.  Perception of Fourier and non-Fourier motion by larval zebrafish , 2000, Nature Neuroscience.

[65]  Marijn C. W. Kroes,et al.  The parallel between reverse-phi and motion aftereffects. , 2007, Journal of vision.

[66]  Ben Poole,et al.  Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression , 2016, The Journal of Neuroscience.

[67]  Marijn C. W. Kroes,et al.  Sensitivity for reverse-phi motion , 2009, Vision Research.

[68]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[69]  G. Mather Computational modelling of motion detectors: responses to two-frame displays. , 1990, Spatial vision.

[70]  Alexander Borst,et al.  Complementary mechanisms create direction selectivity in the fly , 2016, eLife.

[71]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[72]  Michael H. Dickinson,et al.  Cellular mechanisms for integral feedback in visually guided behavior , 2014, Proceedings of the National Academy of Sciences.

[73]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[74]  A. Johnston,et al.  A unified account of three apparent motion illusions , 1995, Vision Research.

[75]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[76]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[77]  Yvette E. Fisher,et al.  Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.