Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus

By now, we have a good understanding of how NP-hard problems become easier on graphs of bounded treewidth and bounded cliquewidth: for various problems, matching upper bounds and conditional lower bounds describe exactly how the running time has to depend on treewidth or cliquewidth. In particular, Fomin et al. (2009, 2010) have shown a significant difference between these two parameters: assuming the Exponential-Time Hypothesis (ETH), the optimal algorithms for problems such as M ax C ut and E dge D ominating S et have running time 2O(t)nO(1) when parameterized by treewidth, but nO(t) when parameterized by cliquewidth. In this paper, we show that a similar phenomenon occurs also for counting problems. Specifically, we prove that, assuming the counting version of the Strong Exponential-Time Hypothesis (#SETH), the problem of counting perfect matchings • has no (2 --- e)knO(1) time algorithm for any e > 0 on graphs of treewidth k (but it is known to be solvable in time 2knO(1) if a tree decomposition of width k is given), and • has no O(n(1-e)k) time algorithm for any e > 0 on graphs of cliquewidth k (but it can be solved in time O(nk+1) if a k-expression is given). A celebrated result of Fisher, Kasteleyn, and Temperley from the 1960s shows that counting perfect matchings in planar graphs is polynomial-time solvable. This was later extended by Gallucio and Loebl (1999), Tesler (2000) and Regge and Zechina (2000) who gave 4k · nO(1) time algorithms for graphs of genus k. We show that the dependence on the genus k has to be exponential: assuming #ETH, the counting version of ETH, there is no 2O(k) · nO(1) time algorithm for the problem on graphs of genus k.

[1]  Jin-Yi Cai,et al.  From Holant to #CSP and Back: Dichotomy for Holantc Problems , 2012, Algorithmica.

[2]  Stefan Kratsch,et al.  Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth , 2013, Inf. Comput..

[3]  Philip N. Klein,et al.  A subexponential parameterized algorithm for Subset TSP on planar graphs , 2014, SODA.

[4]  Marvin Künnemann,et al.  Quadratic Conditional Lower Bounds for String Problems and Dynamic Time Warping , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[5]  Mohammad Taghi Hajiaghayi,et al.  Tight Bounds for Planar Strongly Connected Steiner Subgraph with Fixed Number of Terminals (and Extensions) , 2014, SODA.

[6]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[7]  Petr A. Golovach,et al.  Almost Optimal Lower Bounds for Problems Parameterized by Clique-Width , 2014, SIAM J. Comput..

[8]  Marc Noy,et al.  Computing the Tutte Polynomial on Graphs of Bounded Clique-Width , 2006, SIAM J. Discret. Math..

[9]  Fedor V. Fomin,et al.  Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms , 2013, SODA.

[10]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[11]  Erik D. Demaine,et al.  Bidimensional Parameters and Local Treewidth , 2004, LATIN.

[12]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[13]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[14]  Ioan Todinca,et al.  On powers of graphs of bounded NLC-width (clique-width) , 2007, Discret. Appl. Math..

[15]  Jin-Yi Cai,et al.  Dichotomy for Holant* Problems with Domain Size 3 , 2013, SODA.

[16]  Mingji Xia,et al.  Parameterizing the Permanent: Genus, Apices, Minors, Evaluation Mod 2k , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[17]  Fedor V. Fomin,et al.  Beyond Bidimensionality: Parameterized Subexponential Algorithms on Directed Graphs , 2010, STACS.

[18]  Dániel Marx,et al.  Slightly superexponential parameterized problems , 2011, SODA '11.

[19]  Yoshio Okamoto,et al.  On Problems as Hard as CNFSAT , 2011, ArXiv.

[20]  Petr A. Golovach,et al.  Tight complexity bounds for FPT subgraph problems parameterized by the clique-width , 2013, Theor. Comput. Sci..

[21]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[22]  Michal Pilipczuk,et al.  Problems Parameterized by Treewidth Tractable in Single Exponential Time: A Logical Approach , 2011, MFCS.

[23]  Udi Rotics,et al.  Polynomial algorithms for partitioning problems on graphs with fixed clique-width (extended abstract) , 2001, SODA '01.

[24]  Amir Abboud,et al.  Tight Hardness Results for LCS and Other Sequence Similarity Measures , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[25]  Amir Abboud,et al.  Quadratic-Time Hardness of LCS and other Sequence Similarity Measures , 2015, ArXiv.

[26]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[27]  Erik D. Demaine,et al.  Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth , 2004, GD.

[28]  Radu Curticapean,et al.  The simple, little and slow things count: on parameterized counting complexity , 2015, Bull. EATCS.

[29]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[30]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[31]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[32]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[33]  Martin Loebl,et al.  On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents , 1998, Electron. J. Comb..

[34]  D DemaineErik,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005 .

[35]  Piotr Indyk,et al.  Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false) , 2014, STOC.

[36]  Yoshio Okamoto,et al.  On Problems as Hard as CNF-SAT , 2011, 2012 IEEE 27th Conference on Computational Complexity.

[37]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[38]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and Matchgate Tensors , 2006, TAMC.

[39]  Jin-Yi Cai,et al.  Dichotomy for Holant problems of Boolean domain , 2011, SODA '11.

[40]  Egon Wanke,et al.  How to Solve NP-hard Graph Problems on Clique-Width Bounded Graphs in Polynomial Time , 2001, WG.

[41]  Dániel Marx,et al.  Exponential Time Complexity of the Permanent and the Tutte Polynomial , 2010, TALG.

[42]  Michael U. Gerber,et al.  Algorithms for vertex-partitioning problems on graphs with fixed clique-width , 2003, Theor. Comput. Sci..

[43]  Jin-Yi Cai,et al.  Holographic Algorithms by Fibonacci Gates and Holographic Reductions for Hardness , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[44]  Stefan Kratsch,et al.  Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.

[45]  Jin-Yi Cai,et al.  Matchgates Revisited , 2013, Theory Comput..

[46]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[47]  Riccardo Zecchina,et al.  Combinatorial and topological approach to the 3D Ising model , 1999 .

[48]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[49]  Michal Pilipczuk,et al.  Hitting forbidden subgraphs in graphs of bounded treewidth , 2014, Inf. Comput..

[50]  Erik Jan van Leeuwen,et al.  Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.

[51]  Markus Bläser,et al.  Complexity of the Cover Polynomial , 2007, ICALP.

[52]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[53]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[54]  Jin-Yi Cai,et al.  Holant Problems for Regular Graphs with Complex Edge Functions , 2010, STACS.

[55]  Ryan Williams,et al.  Finding orthogonal vectors in discrete structures , 2014, SODA.

[56]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[57]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[58]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[59]  Erik Jan van Leeuwen,et al.  Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[60]  Johann A. Makowsky,et al.  Evaluations of Graph Polynomials , 2008, WG.

[61]  Pinyan Lu,et al.  A Dichotomy for Real Weighted Holant Problems , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[62]  Jin-Yi Cai,et al.  Dichotomy for Holant* Problems with a Function on Domain Size 3 , 2012, ArXiv.

[63]  Glenn Tesler,et al.  Matchings in Graphs on Non-orientable Surfaces , 2000, J. Comb. Theory, Ser. B.

[64]  Peter Rossmanith,et al.  Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.

[65]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[66]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[67]  Glencora Borradaile,et al.  Optimal dynamic program for r-domination problems over tree decompositions , 2015, IPEC.

[68]  Petr A. Golovach,et al.  Intractability of Clique-Width Parameterizations , 2010, SIAM J. Comput..

[69]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..

[70]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[71]  Jin-Yi Cai,et al.  Computational Complexity of Holant Problems , 2011, SIAM J. Comput..

[72]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[73]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[74]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[75]  Jin-Yi Cai,et al.  The complexity of counting edge colorings and a dichotomy for some higher domain Holant problems , 2016 .

[76]  Mihai Patrascu,et al.  On the possibility of faster SAT algorithms , 2010, SODA '10.

[77]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions , 2005, ESA.

[78]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[79]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[80]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[81]  Johann A. Makowsky,et al.  Computing Graph Polynomials on Graphs of Bounded Clique-Width , 2006, WG.

[82]  Richard Krueger Graph searching , 2005 .

[83]  Oren Weimann,et al.  Consequences of Faster Alignment of Sequences , 2014, ICALP.

[84]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[85]  Udi Rotics,et al.  Edge dominating set and colorings on graphs with fixed clique-width , 2003, Discret. Appl. Math..

[86]  Fedor V. Fomin,et al.  Subexponential algorithms for partial cover problems , 2011, Inf. Process. Lett..

[87]  Victor Y. Pan Simple Multivariate Polynomial Multiplication , 1994, J. Symb. Comput..

[88]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[89]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[90]  Leslie G. Valiant,et al.  The Complexity of Symmetric Boolean Parity Holant Problems , 2013, SIAM J. Comput..

[91]  Chris Calabro,et al.  k-SAT Is No Harder Than Decision-Unique-k-SAT , 2009, CSR.

[92]  Dimitrios M. Thilikos Fast Sub-exponential Algorithms and Compactness in Planar Graphs , 2011, ESA.

[93]  Michaël Rao,et al.  MSOL partitioning problems on graphs of bounded treewidth and clique-width , 2007, Theor. Comput. Sci..

[94]  Jin-Yi Cai,et al.  Holant problems and counting CSP , 2009, STOC '09.

[95]  Philip N. Klein,et al.  Solving Planar k -Terminal Cut in $O(n^{c \sqrt{k}})$ Time , 2012, ICALP.