Tetraspanins: integrating cell surface receptors to functional microdomains in homeostasis and disease

[1]  D. Schneider,et al.  Classes of non-conventional tetraspanins defined by alternative splicing , 2019, Scientific Reports.

[2]  Jie Jin,et al.  Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting , 2019, Journal of Hematology & Oncology.

[3]  Yuan Wang,et al.  CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17 , 2019, International journal of biological sciences.

[4]  J. Thiery,et al.  Mesenchymal–epithelial transition in development and reprogramming , 2019, Nature Cell Biology.

[5]  M. Babu,et al.  Mechanisms of signalling and biased agonism in G protein-coupled receptors , 2018, Nature Reviews Molecular Cell Biology.

[6]  A. Wiestner,et al.  Targeting B cell receptor signalling in cancer: preclinical and clinical advances , 2018, Nature Reviews Cancer.

[7]  K. Ebnet Junctional Adhesion Molecules (JAMs): Cell Adhesion Receptors With Pleiotropic Functions in Cell Physiology and Development. , 2017, Physiological reviews.

[8]  A. V. van Spriel,et al.  Molecular interactions shaping the tetraspanin web. , 2017, Biochemical Society transactions.

[9]  Ron O. Dror,et al.  Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket , 2016, Cell.

[10]  M. Balda,et al.  Tight junctions: from simple barriers to multifunctional molecular gates , 2016, Nature Reviews Molecular Cell Biology.

[11]  D. Richardson,et al.  Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. , 2016, Biochimica et biophysica acta.

[12]  S. Barry,et al.  Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition , 2016, The Journal of cell biology.

[13]  R. Koenen,et al.  Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in Hyperlipidemic Mice , 2022 .

[14]  Scott R Granter,et al.  EWI-2 negatively regulates TGF-β signaling leading to altered melanoma growth and metastasis , 2015, Cell Research.

[15]  C. Boucheix,et al.  Tetraspanins at a glance , 2014, Journal of Cell Science.

[16]  K. Lidke,et al.  The membrane scaffold CD82 regulates cell adhesion by altering α4 integrin stability and molecular density , 2014, Molecular biology of the cell.

[17]  M. Takeichi Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling , 2014, Nature Reviews Molecular Cell Biology.

[18]  B. Geiger,et al.  The integrin adhesome: from genes and proteins to human disease , 2014, Nature Reviews Molecular Cell Biology.

[19]  J. Caplan,et al.  Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex. , 2014, Blood.

[20]  J. Cambier,et al.  B lymphocyte antigen receptor signaling: initiation, amplification, and regulation , 2013, F1000prime reports.

[21]  A. Mauviel,et al.  Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma , 2013, Annals of dermatology.

[22]  A. Griffioen,et al.  Tetraspanin CD63 Promotes Vascular Endothelial Growth Factor Receptor 2-β1 Integrin Complex Formation, Thereby Regulating Activation and Downstream Signaling in Endothelial Cells in Vitro and in Vivo* , 2013, The Journal of Biological Chemistry.

[23]  R. Adams,et al.  Tetraspanin CD9 links junctional adhesion molecule-A to αvβ3 integrin to mediate basic fibroblast growth factor–specific angiogenic signaling , 2013, Molecular biology of the cell.

[24]  Andreas Bruckbauer,et al.  The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. , 2013, Immunity.

[25]  F. Sánchez‐Madrid,et al.  CD81 regulates cell migration through its association with Rac GTPase , 2013, Molecular biology of the cell.

[26]  Delong Liu,et al.  CD19: a biomarker for B cell development, lymphoma diagnosis and therapy , 2012, Experimental Hematology & Oncology.

[27]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[28]  L. Brass,et al.  JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets. , 2012, Blood.

[29]  Y. Goda,et al.  The X-Linked Intellectual Disability Protein TSPAN7 Regulates Excitatory Synapse Development and AMPAR Trafficking , 2012, Neuron.

[30]  M. Tomlinson,et al.  The emerging role of tetraspanin microdomains on endothelial cells. , 2011, Biochemical Society transactions.

[31]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[32]  D. Cheresh,et al.  αV integrins in angiogenesis and cancer. , 2011, Cold Spring Harbor perspectives in medicine.

[33]  M. Yáñez-Mó,et al.  The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9 , 2011, Cellular and Molecular Life Sciences.

[34]  J. Dubuisson,et al.  Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection* , 2011, The Journal of Biological Chemistry.

[35]  M. van der Burg,et al.  CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. , 2010, The Journal of clinical investigation.

[36]  Tatiana Segura,et al.  Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells , 2010, The Journal of cell biology.

[37]  R. DePinho,et al.  PI3 Kinase Signals BCR-Dependent Mature B Cell Survival , 2009, Cell.

[38]  O. Barreiro,et al.  Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. , 2009, Trends in cell biology.

[39]  L. Jennings,et al.  Tetraspanins and vascular functions. , 2009, Cardiovascular research.

[40]  Eric Rubinstein,et al.  Lateral organization of membrane proteins: tetraspanins spin their web. , 2009, The Biochemical journal.

[41]  C. Gachet,et al.  CD9 negatively regulates integrin αIIbβ3 activation and could thus prevent excessive platelet recruitment at sites of vascular injury , 2009, Journal of thrombosis and haemostasis : JTH.

[42]  R. DeSalle,et al.  Appearance of new tetraspanin genes during vertebrate evolution. , 2008, Genomics.

[43]  W. Nelson,et al.  Synapses: sites of cell recognition, adhesion, and functional specification. , 2007, Annual review of biochemistry.

[44]  K. Alitalo,et al.  Molecular regulation of angiogenesis and lymphangiogenesis , 2007, Nature Reviews Molecular Cell Biology.

[45]  N. Hotchin,et al.  Syntenin-1 Is a New Component of Tetraspanin-Enriched Microdomains: Mechanisms and Consequences of the Interaction of Syntenin-1 with CD63 , 2006, Molecular and Cellular Biology.

[46]  M. Foti,et al.  Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1 , 2006, The Journal of Cell Biology.

[47]  M. Hemler Tetraspanin functions and associated microdomains , 2005, Nature Reviews Molecular Cell Biology.

[48]  S. Levy,et al.  Protein-protein interactions in the tetraspanin web. , 2005, Physiology.

[49]  W. DeGrado,et al.  Structural Organization and Interactions of Transmembrane Domains in Tetraspanin Proteins , 2005 .

[50]  S. Levy,et al.  The tetraspanin web modulates immune-signalling complexes , 2005, Nature Reviews Immunology.

[51]  J. Hartwig,et al.  Signaling Pathways of the F11 Receptor (F11R; a.k.a. JAM-1, JAM-A) in Human Platelets: F11R Dimerization, Phosphorylation and Complex Formation with the Integrin GPIIIa , 2004, Journal of receptor and signal transduction research.

[52]  S. Levy,et al.  The Tetraspanin CD81 Is Necessary for Partitioning of Coligated CD19/CD21-B Cell Antigen Receptor Complexes into Signaling-Active Lipid Rafts 1 , 2004, The Journal of Immunology.

[53]  T. V. Kolesnikova,et al.  EWI-2 regulates α3β1 integrin–dependent cell functions on laminin-5 , 2003, The Journal of cell biology.

[54]  David A. Cheresh,et al.  Differential αv integrin–mediated Ras-ERK signaling during two pathways of angiogenesis , 2003, The Journal of cell biology.

[55]  D. Stupack,et al.  Role of Raf in Vascular Protection from Distinct Apoptotic Stimuli , 2003, Science.

[56]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[57]  T. V. Kolesnikova,et al.  Functional domains in tetraspanin proteins. , 2003, Trends in biochemical sciences.

[58]  T. V. Kolesnikova,et al.  EWI-2 Is a Major CD9 and CD81 Partner and Member of a Novel Ig Protein Subfamily* , 2001, The Journal of Biological Chemistry.

[59]  Krista L. Clark,et al.  PGRL Is a Major CD81-Associated Protein on Lymphocytes and Distinguishes a New Family of Cell Surface Proteins1 , 2001, The Journal of Immunology.

[60]  M. Seigneuret,et al.  Structure of the Tetraspanin Main Extracellular Domain , 2001, The Journal of Biological Chemistry.

[61]  M. Hemler,et al.  Transmembrane-4 Superfamily Proteins Associate with Activated Protein Kinase C (PKC) and Link PKC to Specific β1 Integrins* , 2001, The Journal of Biological Chemistry.

[62]  M. Hemler,et al.  FPRP, a Major, Highly Stoichiometric, Highly Specific CD81- and CD9-associated Protein* , 2001, The Journal of Biological Chemistry.

[63]  M. Bolognesi,et al.  CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs , 2001, The EMBO journal.

[64]  R. Kramer,et al.  Integrin α3β1 Engagement Disrupts Intercellular Adhesion , 2001 .

[65]  J. Schlessinger,et al.  Cell Signaling by Receptor Tyrosine Kinases , 2000, Cell.

[66]  M. Fujimoto,et al.  CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. , 2000, Immunity.

[67]  C. Boucheix,et al.  CD19 Is Linked to the Integrin-associated Tetraspans CD9, CD81, and CD82* , 1998, The Journal of Biological Chemistry.

[68]  M. Ginsberg,et al.  Analysis of the tetraspanin CD9-integrin alphaIIbbeta3 (GPIIb-IIIa) complex in platelet membranes and transfected cells. , 1997, The Biochemical journal.

[69]  R. Geha,et al.  Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Levy,et al.  Normal Lymphocyte Development but Delayed Humoral Immune Response in CD81-null Mice , 1997, The Journal of experimental medicine.

[71]  David A. Cheresh,et al.  Definition of Two Angiogenic Pathways by Distinct αv Integrins , 1995, Science.

[72]  Xiuhua Wang,et al.  Tissue Inhibitor of Matrix Metalloproteinase-1 Promotes Myocardial Fibrosis by Mediating CD63–Integrin &bgr;1 Interaction , 2017, Hypertension.

[73]  R. Kramer,et al.  Integrin alpha3beta1 engagement disrupts intercellular adhesion. , 2001, Experimental cell research.

[74]  D. Cheresh,et al.  Definition of two angiogenic pathways by distinct alpha v integrins. , 1995, Science.