Adaptive Bayesian Optimisation for Online Portfolio Selection

We present a Bayesian approach for online portfolio selection, a fundamental problem in computational finance. We pose the problem as the global optimisation of an expensive, time-varying, black-box function. As the optimum is itself dynamic, we use a model that allows us to capture time-dependent patterns of the function and to provide sequential decision processes that enable us to select optimal portfolios to invest in an online manner.

[1]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.

[2]  T. Cover Universal Portfolios , 1996 .

[3]  Yoram Singer,et al.  On‐Line Portfolio Selection Using Multiplicative Updates , 1998, ICML.

[4]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[5]  Allan Borodin,et al.  Can We Learn to Beat the Best Stock , 2003, NIPS.

[6]  G. Lugosi,et al.  NONPARAMETRIC KERNEL‐BASED SEQUENTIAL INVESTMENT STRATEGIES , 2006 .

[7]  Robert E. Schapire,et al.  Algorithms for portfolio management based on the Newton method , 2006, ICML.

[8]  László Györfi,et al.  Nonparametric nearest neighbor based empirical portfolio selection strategies , 2008 .

[9]  D. Lizotte Practical bayesian optimization , 2008 .

[10]  Michael A. Osborne,et al.  Gaussian Processes for Global Optimization , 2008 .

[11]  D. Ginsbourger,et al.  Kriging is well-suited to parallelize optimization , 2010 .

[12]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[13]  Bin Li,et al.  CORN: Correlation-driven nonparametric learning approach for portfolio selection , 2011, TIST.

[14]  Bin Li,et al.  On-Line Portfolio Selection with Moving Average Reversion , 2012, ICML.

[15]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[16]  Steven C. H. Hoi,et al.  PAMR: Passive aggressive mean reversion strategy for portfolio selection , 2012, Machine Learning.

[17]  Andrew Gordon Wilson,et al.  Gaussian Process Kernels for Pattern Discovery and Extrapolation , 2013, ICML.

[18]  David Ginsbourger,et al.  Fast Computation of the Multi-Points Expected Improvement with Applications in Batch Selection , 2013, LION.

[19]  Steven C. H. Hoi,et al.  Online portfolio selection: A survey , 2012, CSUR.

[20]  Steven C. H. Hoi,et al.  Confidence-Weighted Mean Reversion , 2015 .

[21]  Yves-Laurent Kom Samo,et al.  Generalized Spectral Kernels , 2015, 1506.02236.

[22]  B. Li,et al.  Online Moving Average Reversion , 2015 .

[23]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.