Nonlinear reference tracking control of a gas turbine with load torque estimation

Input–output linearization-based adaptive reference tracking control of a low-power gas turbine model is presented in this paper. The gas turbine is described by a third-order nonlinear input-affine state-space model, where the manipulable input is the fuel mass flowrate and the controlled output is the rotational speed. The stability of the one-dimensional zero dynamics of the controlled plant is investigated via phase diagrams. The input–output linearizing feedback is extended with a load torque estimator algorithm resulting in an adaptive feedback scheme. The tuning of controller parameters is performed considering three main design goals: appropriate settling time, robustness against environmental disturbances and model parameter uncertainties, and avoiding the saturation of the actuator. Simulations show that the closed-loop system is robust with respect to the variations in uncertain model and environ-mental parameters and its performance satisfies the defined requirements. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Francisco Jurado,et al.  Improving distribution system stability by predictive control of gas turbines , 2006 .

[2]  Gang Tao,et al.  Adaptive output feedback actuator failure compensation for a class of non‐linear systems , 2005 .

[3]  Gábor Szederkényi,et al.  Parameter-estimation and model validation of a low-power gas turbine , 2002 .

[4]  Michael Athans,et al.  Linear-quadratic Gaussian with loop-transfer recovery methodology for the F-100 engine , 1986 .

[5]  G. G. Kulikov,et al.  Dynamic Modelling of Gas Turbines , 2004 .

[6]  A. E. Ariffin,et al.  Robust control analysis of a gas-turbine aeroengine , 1997, IEEE Trans. Control. Syst. Technol..

[7]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[8]  G. G. Kulikov,et al.  Dynamic modelling of gas turbines : identification, simulation, condition monitoring and optimal control , 2004 .

[9]  Guo-Ping Liu,et al.  Advanced controller design for aircraft gas turbine engines , 2005 .

[10]  James F. Whidborne,et al.  Diesel engine indicated and load torque estimation using a non-linear observer , 2009 .

[11]  Tim Kelly,et al.  Using Safety Critical Artificial Neural Networks in Gas Turbine Aero-Engine Control , 2005, SAFECOMP.

[12]  R A Perez Model Reference Control of a Gas Turbine Engine , 1996 .

[13]  Gábor Szederkényi,et al.  Nonlinear model-building of a low-power gas turbine , 2001 .

[14]  Gábor Szederkényi,et al.  MODEL-BASED NONLINEAR CONTROL OF A LOW-POWER GAS TURBINE , 2002 .

[15]  Cristiano Maria Verrelli,et al.  Adaptive control for speed‐sensorless induction motors with uncertain load torque and rotor resistance , 2005 .

[16]  Peter J. Fleming,et al.  Fuzzy scheduling control of a gas turbine aero-engine: a multiobjective approach , 2002, IEEE Trans. Ind. Electron..

[17]  Shih-Tin Lin,et al.  Intelligent Control of the F-100 Turbofan Engine for Full Flight Envelope Operation , 2005 .

[18]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[19]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[20]  Alessandro Goedtel,et al.  Load torque identification in induction motor using neural networks technique , 2007 .

[21]  C. Evans Testing and modelling aircraft gas turbines: an introduction and overview , 1998 .

[22]  Robert R. Bitmead,et al.  Nonlinear model predictive control of an aircraft gas turbine engine , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..