Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus

[1]  Robert A. Blanchette,et al.  Microbial and Enzymatic Degradation of Wood and Wood Components , 2012, Springer Series in Wood Science.

[2]  A. Sethuraman,et al.  Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus , 1995, Applied and environmental microbiology.

[3]  A. Sethuraman,et al.  Biodegradation of lignocellulose in Bermuda grass by white rot fungi analyzed by solid-state 13C nuclear magnetic resonance , 1994, Applied and environmental microbiology.

[4]  M. Vassileva,et al.  Plant lignocellulose and decomposition by fungi: From nature to industrial use , 1994 .

[5]  Kurt Messner,et al.  Biopulping : an overview of developments in an environmentally safe paper-making technology , 1994 .

[6]  D. Jalc,et al.  Effect of fungus-treated straw on ruminal fermentation in vitro , 1994 .

[7]  A. Sethuraman,et al.  Microbial Delignification with White Rot Fungi Improves Forage Digestibility , 1993, Applied and environmental microbiology.

[8]  M. Gold,et al.  Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium , 1993, Microbiological reviews.

[9]  D. E. Akin,et al.  Microspectrophotometry and digestibility of alkali-treated walls in bermudagrass cell types , 1992 .

[10]  A. González,et al.  CPMAS 13C NMR study of lignin preparations from wheat straw transformed by five lignocellulose-degrading fungi , 1992 .

[11]  R. Hatfield,et al.  Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. , 1992, Journal of animal science.

[12]  C. E. Lyon,et al.  Differences in rumen bacterial degradation of morphological fractions in eight cereal straws and the effect of digestion on different types of tissues and mechanical properties of straw stalks , 1992 .

[13]  T. Kondo,et al.  Ester- and ether-linked phenolic acids in orchardgrass (Dactylis glomerata L.) and their digestion from cell walls when fed to sheep , 1991 .

[14]  N. Lewis,et al.  Plant Cell Wall Polymers: Biogenesis and Biodegradation , 1989 .

[15]  G. Horn,et al.  Influence of stage of forage maturity and ammoniation of wheat straw on ruminal degradation of wheat forage tissues , 1989 .

[16]  W. R. Windham,et al.  Forage Preservation Method Influences on Tannin Concentration, Intake, and Digestibility of Sericea Lespedeza by Sheep , 1989 .

[17]  C. MacKenzie,et al.  Ferulic Acid Esterase Activity from Schizophyllum commune , 1988, Applied and environmental microbiology.

[18]  D. R. Buxton,et al.  Lignin constituents and cell-wall digestibility of grass and legume stems , 1988 .

[19]  D. E. Akin,et al.  Ozone Treatment of Forage: Structure and Digestibility of Different Types of Lignified Cell Walls , 1988 .

[20]  I. Reid,et al.  Delignification of Wheat Straw by Pleurotus spp. under Mushroom-Growing Conditions , 1987, Applied and environmental microbiology.

[21]  D. E. Akin Interaction of Ruminal Bacteria and Fungi with Southern Forages , 1986 .

[22]  F. E. Barton,et al.  Histochemical Reactions, Autofluorescence, and Rumen Microbial Degradation of Tissues in Untreated and Delignified Bermudagrass Stems 1 , 1985 .

[23]  E. Agosin,et al.  Structural changes in wheat straw components during decay by lignin‐degrading white‐rot fungi in relation to improvement of digestibility for ruminants , 1985 .

[24]  R. W. Detroy,et al.  Degradation of lignocellulose in wheat straw versus hardwood by Cyathus and related species (Nidulariaceae) , 1984 .

[25]  E. D. Donnelly Registration of AU Lotan Sericea Lespedeza1 (Reg. No. 11) , 1981 .

[26]  R. Blanchette,et al.  Biomechanical Pulping of Loblolly Pine Chips with Selected White-Rot Fungi , 1993 .

[27]  D. E. Akin,et al.  Biodegradation of cell types in normal and brown midrib mutant pearl millet (Pennisetum glaucum (L) R Br): microspectrophotometric and electron microscopic studies of walls and wall layers , 1993 .

[28]  D. Himmelsbach,et al.  Investigation of the ester‐ and ether‐linked phenolic constituents of cell wall types of normal and brown midrib pearl millet using chemical isolation, microspectrophotometry and 13C NMR spectroscopy , 1993 .

[29]  D. Buxton,et al.  Forage Cell Wall Structure and Digestibility , 1993 .

[30]  D. E. Akin,et al.  UV Absorption microspectrophotometry and digestibility of cell types of bermudagrass internodes at different stages of maturity , 1992 .

[31]  S. L. Fales,et al.  Chemical composition and biodegradability of crop residues colonized by white-rot fungi , 1992 .

[32]  D. E. Akin,et al.  Scanning electron microscopy and ultraviolet absorption microspectrophotometry of plant cell types of different biodegradabilities , 1992 .

[33]  N. Terashima,et al.  Formation and Structure of Lignin in Monocotyledons IV. Deposition Process and Structural Diversity of the Lignin in the CellWall of Sugarcane and Rice Plant Studied by Ultraviolet Microscopic Spectroscopy , 1991 .

[34]  Bruce A. Stone,et al.  Phenolic acid bridges between polysaccharides and lignin in wheat internodes , 1990 .

[35]  T. Lundell,et al.  The potential of white‐rot fungi and their enzymes in the treatment of lignocellulosic feed , 1989 .

[36]  N. Lewis,et al.  Phenolic constituents of plant cell walls and wall biodegradability. , 1989 .

[37]  D. E. Akin Histological and Physical Factors Affecting Digestibility of Forages , 1989 .

[38]  D. E. Akin,et al.  Structure of Leaves and Stems of Arrowleaf and Crimson Clovers as Related to In Vitro Digestibility 1 , 1982 .