Multigrid-based 'shifted-Laplacian' preconditioning for the time-harmonic elastic wave equation
暂无分享,去创建一个
[1] Laurent Demanet,et al. Nested Domain Decomposition with Polarized Traces for the 2D Helmholtz Equation , 2015, SIAM J. Sci. Comput..
[2] Jianlin Xia,et al. On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .
[3] Jianlin Xia,et al. Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .
[4] Ray S. Tuminaro,et al. Augmented AMG‐shifted Laplacian preconditioners for indefinite Helmholtz problems , 2015, Numer. Linear Algebra Appl..
[5] Reinhard Nabben,et al. Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..
[6] René-Édouard Plessix,et al. How to choose a subset of frequencies in frequency-domain finite-difference migration , 2004 .
[7] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[8] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[9] William L. Briggs,et al. A multigrid tutorial , 1987 .
[10] Cornelis Vuik,et al. On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..
[11] Cornelis Vuik,et al. Closing the performance gap for 3-D migration with an iterative frequency-domain solver and an explicit time-domain scheme on parallel architectures , 2014 .
[12] I. Štekl,et al. Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .
[13] Cornelis Vuik,et al. Closing the performance gap between an iterative frequency-domain solver and an explicit time-domain scheme for 3D migration on parallel architectures , 2014 .
[14] Michael B. Giles,et al. Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .
[15] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[16] A. Abubakar,et al. Iterative solution of 3D acoustic wave equation with perfectly matched layer boundary condition and multigrid preconditioner , 2013 .
[17] Changsoo Shin,et al. Free-Surface Boundary Condition in Finite-Difference Elastic Wave Modeling , 2004 .
[18] Changsoo Shin,et al. Weighted-Averaging Finite-Element Method for 2D Elastic Wave Equations in the Frequency Domain , 2003 .
[19] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[20] Christiaan C. Stolk,et al. A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..
[21] Cornelis W. Oosterlee,et al. On Three-Grid Fourier Analysis for Multigrid , 2001, SIAM J. Sci. Comput..
[22] Gary Martin,et al. Marmousi2 An elastic upgrade for Marmousi , 2006 .
[23] K. R. Kelly,et al. SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .
[24] Alan George,et al. Computer Solution of Large Sparse Positive Definite , 1981 .
[25] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[26] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[27] R. Pratt. Frequency-domain elastic wave modeling by finite differences : a tool for crosshole seismic imaging , 1990 .
[28] William L. Briggs,et al. A multigrid tutorial, Second Edition , 2000 .
[29] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[30] Dianne P. O'Leary,et al. A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..
[31] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[32] Wim Vanroose,et al. Analyzing the wave number dependency of the convergence rate of a multigrid preconditioned Krylov method for the Helmholtz equation with an absorbing layer , 2011, Numer. Linear Algebra Appl..
[33] Jianlin Xia,et al. Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..
[34] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[35] Changsoo Shin,et al. Improved frequency-domain elastic wave modeling using weighted-averaging difference operators , 2000 .
[36] Aria Abubakar,et al. An effective perfectly matched layer design for acoustic fourth-order frequency-domain finite-difference scheme , 2012 .
[37] W. Mulder. A new multigrid approach to convection problems , 1989 .
[38] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[39] P. M. De Zeeuw,et al. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .
[40] Achi Brandt,et al. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .
[41] William H. Press,et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .
[42] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .