Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays.

Defined nanoparticle cluster arrays (NCAs) with total lateral dimensions of up to 25.4 microm x 25.4 microm have been fabricated on top of a 10 nm thin gold film using template-guided self-assembly. This approach provides precise control of the structural parameters in the arrays, allowing a systematic variation of the average number of nanoparticles in the clusters (n) and the edge-to-edge separation (Lambda) between 1 < n < 20 and 50 nm < or = Lambda < or = 1000 nm, respectively. Investigations of the Rayleigh scattering spectra and surface-enhanced Raman scattering (SERS) signal intensities as a function of n and Lambda reveal direct near-field coupling between the particles within individual clusters, whose strength increases with the cluster size (n) until it saturates at around n = 4. Our analysis shows that strong near-field interactions between individual clusters significantly affect the SERS signal enhancement for edge-to-edge separations Lambda < 200 nm. The observed dependencies of the Raman signals on n and Lambda indicate that NCAs support a multiscale signal enhancement which originates from simultaneous inter- and intracluster coupling and |E|-field enhancement. The NCAs provide strong and reproducible SERS signals not only from small molecules but also from whole bacterial cells, which enabled a rapid spectral discrimination between three tested bacteria species: Escherichia coli, Bacillus cereus, and Staphylococcus aureus.

[1]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[2]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[3]  Yadong Yin,et al.  Template‐Assisted Self‐Assembly of Spherical Colloids into Complex and Controllable Structures , 2003 .

[4]  M. Klempner,et al.  Characterization of the surface enhanced raman scattering (SERS) of bacteria. , 2005, The journal of physical chemistry. B.

[5]  Pascal Royer,et al.  Electromagnetic interactions in plasmonic nanoparticle arrays. , 2005, The journal of physical chemistry. B.

[6]  Hongxing Xu,et al.  Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering , 2001 .

[7]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[8]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[9]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[10]  Dennis G. Hall,et al.  Frequency shifts of an electric-dipole resonance near a conducting surface , 1984 .

[11]  M. J. Sepaniak,et al.  Nanofabrication of Densely Packed Metal—Polymer Arrays for Surface-Enhanced Raman Spectrometry , 2005, Applied spectroscopy.

[12]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[13]  George,et al.  Enhanced Raman scattering by fractal clusters: Scale-invariant theory. , 1992, Physical review. B, Condensed matter.

[14]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[15]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[17]  F. Aussenegg,et al.  Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays , 2002 .

[18]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[19]  D. Genov,et al.  Surface plasmon excitation and correlation-induced localization-delocalization transition in semicontinuous metal films , 2005 .

[20]  Paul F. Liao,et al.  Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit , 1985 .

[21]  A. Hohenau,et al.  Grating-induced plasmon mode in gold nanoparticle arrays. , 2005, The Journal of chemical physics.

[22]  E. Burstein,et al.  Giant Raman Scattering by Molecules at Metal-Island Films , 1980 .

[23]  Luca Dal Negro,et al.  Photonic-plasmonic scattering resonances in deterministic aperiodic structures. , 2008, Nano letters.

[24]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[25]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[26]  Dennis G. Hall,et al.  Enhanced Dipole-Dipole Interaction between Elementary Radiators Near a Surface , 1998 .

[27]  I. S. Patel,et al.  Barcoding bacterial cells: A SERS based methodology for pathogen identification. , 2008, Journal of Raman spectroscopy : JRS.

[28]  B. Reinhard,et al.  Correlated Optical Spectroscopy and Transmission Electron Microscopy of Individual Hollow Nanoparticles and their Dimers. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[29]  Dong Qin,et al.  Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. , 2008, Nano letters.

[30]  N J Halas,et al.  Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[32]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[33]  H. Solak,et al.  Nanopatterning of gold colloids for label-free biosensing , 2007 .

[34]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[35]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[36]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[37]  Luca Dal Negro,et al.  Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS). , 2009, Optics express.

[38]  N. Félidj,et al.  Study of Langmuir-Blodgett phospholipidic films deposited on surface enhanced Raman scattering active gold nanoparticle monolayers. , 2002, Biopolymers.

[39]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[40]  M. Çulha Surface‐Enhanced Raman Scattering of Microorganisms , 2010 .

[41]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[42]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[43]  Pierre-Michel Adam,et al.  Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays , 2005 .

[44]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[45]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[46]  Tao Zhu,et al.  Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling , 2004 .

[47]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[48]  N. P. Economou,et al.  Surface-enhanced raman scattering from microlithographic silver particle surfaces , 1981 .

[49]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[50]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[51]  P. Alstrøm,et al.  COMPLEXITY AND CRITICALITY , 2004 .

[52]  A. Hohenau,et al.  Gold particle interaction in regular arrays probed by surface enhanced Raman scattering. , 2004, The Journal of chemical physics.

[53]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[54]  Mikael T. Björk,et al.  Integration of Colloidal Nanocrystals into Lithographically Patterned Devices , 2004 .

[55]  R. Botet,et al.  Fractals: Localization of dipole excitations and giant optical polarizabilities , 1994 .

[56]  Royston Goodacre,et al.  Surface-enhanced Raman scattering for the rapid discrimination of bacteria. , 2006, Faraday discussions.

[57]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[58]  R. Goodacre,et al.  Discrimination of bacteria using surface-enhanced Raman spectroscopy. , 2004, Analytical chemistry.

[59]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[60]  R. Maoz,et al.  Planned Nanostructures of Colloidal Gold via Self-Assembly on Hierarchically Assembled Organic Bilayer Template Patterns with In-situ Generated Terminal Amino Functionality , 2004 .

[61]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .