Trace: Tennessee Research and Creative Exchange

[1]  Danny Barash,et al.  Temperature and mutation switches in the secondary structure of small RNAs , 2005, 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05).

[2]  Julio Collado-Vides,et al.  RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions , 2005, Nucleic Acids Res..

[3]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[4]  T. D. Schneider,et al.  Anatomy of Escherichia coli ribosome binding sites. , 2001, Journal of molecular biology.

[5]  M. Kozak,et al.  Regulation of translation via mRNA structure in prokaryotes and eukaryotes. , 2005, Gene.

[6]  K. Nakahigashi,et al.  Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. , 1995, Nucleic acids research.

[7]  G. Hambraeus,et al.  Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs , 2003, Molecular Genetics and Genomics.

[8]  Emma Kreuger,et al.  Temperature-controlled Structural Alterations of an RNA Thermometer* , 2003, Journal of Biological Chemistry.

[9]  M. Smit,et al.  Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. , 1990 .

[10]  Robert Giegerich,et al.  Evaluating the predictability of conformational switching in RNA , 2004, Bioinform..

[11]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[12]  Hirotada Mori,et al.  Heat induction of θ32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli , 1993 .

[13]  Torsten Waldminghaus,et al.  Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers , 2007, Molecular Genetics and Genomics.

[14]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T A Hughes,et al.  Mathematical and biological modelling of RNA secondary structure and its effects on gene expression. , 2006, Computational and mathematical methods in medicine.

[16]  David Tollervey,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009, Science.

[17]  G. Church,et al.  Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. , 2003, Genome research.

[18]  M. Huynen,et al.  Assessing the reliability of RNA folding using statistical mechanics. , 1997, Journal of molecular biology.

[19]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[20]  D. Turner,et al.  Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Torsten Waldminghaus,et al.  RNA thermometers are common in α- and γ-proteobacteria , 2005 .

[22]  F. Narberhaus,et al.  Molecular basis for temperature sensing by an RNA thermometer , 2006, The EMBO journal.