HKPocket: human kinase pocket database for drug design

[1]  Yunjie Zhao,et al.  DIRECT: RNA contact predictions by integrating structural patterns , 2019, BMC Bioinformatics.

[2]  Chen Zeng,et al.  RBind: computational network method to predict RNA binding sites , 2018, Bioinform..

[3]  Yang Zhang,et al.  WDL‐RF: predicting bioactivities of ligand molecules acting with G protein‐coupled receptors by combining weighted deep learning and random forest , 2018, Bioinform..

[4]  F. Kashanchi,et al.  Design of Tat-Activated Cdk9 Inhibitor , 2018, International Journal of Peptide Research and Therapeutics.

[5]  Peter Willett,et al.  Cross‐Classified Multilevel Modelling of the Effectiveness of Similarity‐Based Virtual Screening , 2018, ChemMedChem.

[6]  N. Gray,et al.  Kinase inhibitors: the road ahead , 2018, Nature Reviews Drug Discovery.

[7]  Arzucan Özgür,et al.  DeepDTA: deep drug–target binding affinity prediction , 2018, Bioinform..

[8]  F. Kashanchi,et al.  Computational study of non-catalytic T-loop pocket on CDK proteins for drug development , 2017 .

[9]  Avner Schlessinger,et al.  A Whole Animal Platform to Advance A Clinical Kinase Inhibitor Into New Disease Space , 2017, Nature chemical biology.

[10]  H. H. Huang,et al.  Network Analysis Reveals the Recognition Mechanism for Dimer Formation of Bulb-type Lectins , 2017, Scientific Reports.

[11]  S. Muskal,et al.  High quality, small molecule-activity datasets for kinase , 2017 .

[12]  Yan Zhao,et al.  Molecularly Responsive Binding through Co-occupation of Binding Space: A Lock-Key Story. , 2016, Organic letters.

[13]  Friedrich Rippmann,et al.  Identification and Visualization of Kinase-Specific Subpockets , 2016, J. Chem. Inf. Model..

[14]  Chris de Graaf,et al.  KLIFS: a structural kinase-ligand interaction database , 2015, Nucleic Acids Res..

[15]  S. Knapp,et al.  The ins and outs of selective kinase inhibitor development. , 2015, Nature chemical biology.

[16]  Chen Zeng,et al.  Molecular Dynamics Simulation Reveals Insights into the Mechanism of Unfolding by the A130T/V Mutations within the MID1 Zinc-Binding Bbox1 Domain , 2015, PloS one.

[17]  Friedrich Rippmann,et al.  Pocketome of Human Kinases: Prioritizing the ATP Binding Sites of (Yet) Untapped Protein Kinases for Drug Discovery , 2015, J. Chem. Inf. Model..

[18]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[19]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[20]  Chen Zeng,et al.  Break CDK2/Cyclin E1 Interface Allosterically with Small Peptides , 2014, PloS one.

[21]  Q. Xie,et al.  A Selective NMR Probe to Monitor the Conformational Transition from Inactive to Active Kinase , 2014, ACS chemical biology.

[22]  P. Eyers,et al.  Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. , 2014, Trends in cell biology.

[23]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[24]  Yunjie Zhao,et al.  A new role for STAT3 as a regulator of chromatin topology , 2013, Transcription.

[25]  Jonathan A. Barker,et al.  Kinome Render: a stand-alone and web-accessible tool to annotate the human protein kinome tree , 2013, PeerJ.

[26]  S. Parasuraman,et al.  Protein data bank , 2012, Journal of pharmacology & pharmacotherapeutics.

[27]  Daniel Kuhn,et al.  Combining Global and Local Measures for Structure-Based Druggability Predictions , 2012, J. Chem. Inf. Model..

[28]  Hua Tang,et al.  Discovery and characterization of non-ATP site inhibitors of the mitogen activated protein (MAP) kinases. , 2011, ACS chemical biology.

[29]  Matthias Rarey,et al.  Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets , 2010, J. Chem. Inf. Model..

[30]  Yu-Wei Chang,et al.  An enriched structural kinase database to enable kinome‐wide structure‐based analyses and drug discovery , 2010, Protein science : a publication of the Protein Society.

[31]  L. Wood Management of vascular endothelial growth factor and multikinase inhibitor side effects. , 2009, Clinical journal of oncology nursing.

[32]  Nathanael Gray,et al.  Factors underlying sensitivity of cancers to small-molecule kinase inhibitors , 2009, Nature Reviews Drug Discovery.

[33]  Matthew J Bick,et al.  How to switch off a histidine kinase: crystal structure of Geobacillus stearothermophilus KinB with the inhibitor Sda. , 2009, Journal of molecular biology.

[34]  S. Pang,et al.  Hand‐foot skin reaction in patients treated with sorafenib: a clinicopathological study of cutaneous manifestations due to multitargeted kinase inhibitor therapy , 2007, The British journal of dermatology.

[35]  Allegra Via,et al.  Phospho.ELM: a database of phosphorylation sites—update 2008 , 2007, Nucleic Acids Res..

[36]  P. Ronald,et al.  The Rice Kinase Database. A Phylogenomic Database for the Rice Kinome1[OA] , 2006, Plant Physiology.

[37]  William Stafford Noble,et al.  Support vector machine , 2013 .

[38]  Susan S. Taylor,et al.  Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism , 2006, Proceedings of the National Academy of Sciences.

[39]  Steven M. Muskal,et al.  Interrogating the druggable genome with structural informatics , 2006, Molecular Diversity.

[40]  Michael Gribskov,et al.  Protein kinase resource: An integrated environment for phosphorylation research , 2006, Proteins.

[41]  M. Vihinen,et al.  KinMutBase: A registry of disease‐causing mutations in protein kinase domains , 2005, Human mutation.

[42]  L. Wodicka,et al.  A small molecule–kinase interaction map for clinical kinase inhibitors , 2005, Nature Biotechnology.

[43]  Brian K. Shoichet,et al.  Virtual screening of chemical libraries , 2004, Nature.

[44]  T. Hunter,et al.  The mouse kinome: discovery and comparative genomics of all mouse protein kinases. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Nikolaj Blom,et al.  Phospho.ELM: A database of experimentally verified phosphorylation sites in eukaryotic proteins , 2004, BMC Bioinformatics.

[46]  Toshihisa Takagi,et al.  Kinase pathway database: an integrated protein-kinase and NLP-based protein-interaction resource. , 2003, Genome research.

[47]  T. Hunter,et al.  The Protein Kinase Complement of the Human Genome , 2002, Science.

[48]  T. Hunter,et al.  Evolution of protein kinase signaling from yeast to man. , 2002, Trends in biochemical sciences.

[49]  T. Hunter,et al.  The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification 1 , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[50]  F. Cramer Biochemical correctness: Emil Fischer's lock and key hypothesis, a hundred years after — an essay , 1995 .

[51]  J. Aqvist,et al.  A new method for predicting binding affinity in computer-aided drug design. , 1994, Protein engineering.

[52]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[53]  Narayanaswamy Srinivasan,et al.  KinG: a database of protein kinases in genomes , 2004, Nucleic Acids Res..

[54]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[55]  Mauno Vihinen,et al.  KinMutBase, a database of human disease-causing protein kinase mutations , 2000, Nucleic Acids Res..

[56]  Mauno Vihinen,et al.  KinMutBase, a database of human disease-causing protein kinase mutations , 1999, Nucleic Acids Res..