Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars

[1]  Andrew Steele,et al.  Geochemistry of a continental site of serpentinization, the Tablelands Ophiolite, Gros Morne National Park: A Mars analogue , 2013 .

[2]  W. Brazelton,et al.  Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities , 2012, Front. Microbio..

[3]  L. Torrance,et al.  Unusual Features of Pomoviral RNA Movement , 2011, Front. Microbio..

[4]  N. Sleep,et al.  Serpentinite and the dawn of life , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  E. Cienfuegos,et al.  Carbon and hydrogen isotopic compositions of products of open-system catalytic hydrogenation of CO2: Implications for abiogenic hydrocarbons in Earth’s crust , 2010 .

[6]  N. Varley,et al.  Geochemistry of H2‐ and CH4‐enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane , 2010 .

[7]  R. Summons,et al.  Multiple origins of methane at the Lost City Hydrothermal Field , 2010 .

[8]  B. Lollar,et al.  The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions , 2010 .

[9]  M. Lilley,et al.  Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field , 2010 .

[10]  T. Onstott,et al.  Isotopic signatures of CH4 and higher hydrocarbon gases from Precambrian Shield sites: A model for abiogenic polymerization of hydrocarbons , 2008 .

[11]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[12]  T. Onstott,et al.  Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars. , 2007, Astrobiology.

[13]  Y. Taran,et al.  Carbon isotope effects in the open-system Fischer-Tropsch synthesis , 2007 .

[14]  B. Frost,et al.  On Silica Activity and Serpentinization , 2007 .

[15]  W. Seyfried,et al.  Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data , 2007 .

[16]  Hakan Hosgörmez,et al.  Origin of the natural gas seep of Çirali (Chimera), Turkey: Site of the first Olympic fire , 2007 .

[17]  J. Baross,et al.  Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem , 2006, Applied and Environmental Microbiology.

[18]  D. Blake,et al.  Serpentinization and its implications for life on the early Earth and Mars. , 2006, Astrobiology.

[19]  J. Seewald,et al.  Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions , 2006 .

[20]  J. G. Kuenen,et al.  Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. , 2005, FEMS microbiology reviews.

[21]  Dana R. Yoerger,et al.  A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field , 2005, Science.

[22]  H. G. Trüper,et al.  Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.

[23]  A. Chung,et al.  Bacterial Diversity in a Nonsaline Alkaline Environment: Heterotrophic Aerobic Populations , 2004, Applied and Environmental Microbiology.

[24]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Ward,et al.  Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: Implications for the deep biosphere 1 1 Associate editor: R. Summons , 2004 .

[26]  R. Coleman Geologic Nature of the Jasper Ridge Biological Preserve, San Francisco Peninsula, California , 2004 .

[27]  W. Seyfried,et al.  Hydrocarbons in Hydrothermal Vent Fluids: The Role of Chromium-Bearing Catalysts , 2004, Science.

[28]  K. Pedersen,et al.  Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan , 2004, Extremophiles.

[29]  R. Coleman,et al.  Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California , 2004 .

[30]  J. Ward,et al.  Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs , 2002, Nature.

[31]  S. U.,et al.  Sources and flux of natural gases from Mono Lake , California , 2002 .

[32]  Thomas M. McCollom,et al.  A reassessment of the potential for reduction of dissolved CO 2 to hydrocarbons during serpentinization of olivine , 2001 .

[33]  B. V. Pepich,et al.  Microbial inhibitors for U.S. EPA drinking water methods for the determination of organic compounds. , 2001, Environmental science & technology.

[34]  C. Kendall,et al.  Distribution of oxygen‐18 and deuterium in river waters across the United States , 2001 .

[35]  N. Shimizu,et al.  Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process? , 2000 .

[36]  R. Coleman Prospecting for ophiolites along the California continental margin , 2000 .

[37]  A. Nicolas,et al.  Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program , 2000 .

[38]  C. Kendall,et al.  Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. Geological Survey's NASQAN and benchmark surface-water networks , 2000 .

[39]  J. Horita,et al.  Abiogenic methane formation and isotopic fractionation under hydrothermal conditions , 1999, Science.

[40]  Cynthia K. Dohner U.S. DEPARTMENT OF THE INTERIOR , 1998 .

[41]  P. Landais Petroleum Geochemistry and Geology, Second Edition Edited by John M. Hunt, W. H. Freeman, et al. 1996. ISBN 0-7167-2441-3. 743 pp. , 1997 .

[42]  William E Seyfried,et al.  Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar , 1996 .

[43]  William C. Lyons,et al.  Standard Handbook of Petroleum & Natural Gas Engineering , 1996 .

[44]  J. Hunt,et al.  Petroleum Geochemistry and Geology , 1995 .

[45]  C. Scrimgeour,et al.  High-Precision Determination of 2H/1H in H2 and H2O by Continuous-Flow Isotope Ratio Mass Spectrometry , 1995 .

[46]  J. Brzywczy,et al.  Sulphur metabolism. , 1994, Progress in industrial microbiology.

[47]  S. Macko,et al.  Evidence for bacterially generated hydrocarbon gas in Canadian shield and Fennoscandian shield rocks , 1993 .

[48]  D. Larue Organic matter in the Franciscan and Cedros subduction complexes: the problems of ‘instantaneous maturation’ and ‘missing petroleum’ in accretionary prisms , 1991 .

[49]  J. Böhlke,et al.  Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines , 1990 .

[50]  Michael J. Whiticar,et al.  Sources and flux of natural gases from Mono Lake, California , 1987 .

[51]  B. Michael Thermal maturity and hydrocarbon potential of Franciscan terranes in coastal Northern California; accreted basement to the Eel River basin , 1987 .

[52]  D. Larue Organic Matter in Limestone and Melange Matrix from the Franciscan and Cedros Subduction Complexes , 1986 .

[53]  J. Joron,et al.  Radiochemical neutron activation analysis of rare earth elements in peridotitic rocks , 1985 .

[54]  C. Neal,et al.  Hydrogen generation from mantle source rocks in Oman , 1983 .

[55]  G. Eglinton Petroleum geochemistry and geology , 1980 .

[56]  J. R. O'neil,et al.  Present day serpentinization in New Caledonia, Oman and Yugoslavia , 1978 .

[57]  L. Cardwell,et al.  Analyses of natural gases, 1971 , 1972 .

[58]  D. Wenner Hydrogen and oxygen isotopic studies of serpentinization of ultramafic rocks , 1971 .

[59]  F. J. Flanagan U.S. Geological Survey standards—II. First compilation of data for the new U.S.G.S. rocks , 1969 .

[60]  G. K. Billings,et al.  Distribution of chlorine in terrestrial rocks (a discussion) , 1967 .

[61]  V. Lamarche,et al.  Geochemical Evidence of Present-Day Serpentinization , 1967, Science.