Functional Groups and Activities of Bacteria in a Highly Acidic Volcanic Mountain Stream and Lake in Patagonia, Argentina

[1]  A. Reysenbach,et al.  Microbiology of ancient and modern hydrothermal systems. , 2001, Trends in microbiology.

[2]  Thibault,et al.  Occurrence of sulfate-reducing bacteria under a wide range of physico-chemical conditions in Au and Cu-Zn mine tailings. , 2000, FEMS microbiology ecology.

[3]  S. Peiffer,et al.  Electron flow in an iron‐rich acidic sediment—evidence for an acidity‐driven iron cycle , 2000 .

[4]  P. Delmelle,et al.  Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia , 2000 .

[5]  Annette Summers Engel,et al.  Acidic Cave-Wall Biofilms Located in the Frasassi Gorge, Italy , 2000 .

[6]  C. Blodau,et al.  Organic Matter Diagenesis in Acidic Mine Lakes , 2000 .

[7]  E. Stackebrandt,et al.  Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose , 1999, Applied and Environmental Microbiology.

[8]  R. Amils,et al.  A Comparative Ecological Study of Two Acidic Rivers in Southwestern Spain , 1999, Microbial Ecology.

[9]  Krishna R. Reddy,et al.  Regulators of heterotrophic microbial potentials in wetland soils , 1999 .

[10]  D. Stahl,et al.  Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. , 1999, Environmental microbiology.

[11]  C. Blodau,et al.  Iron and sulfate reduction in the sediments of acidic mine lake 116 (Brandenburg, Germany): Rates and geochemical evaluation , 1998 .

[12]  B. Mayer,et al.  Biogeochemistry of Iron and Sulfur in Sediments of an Acidic Mining Lake in Lusatia, Germany , 1998 .

[13]  M. Kapfer Assessment of the Colonization and Primary Production of Microphytobenthos in the Littoral of Acidic Mining Lakes in Lusatia (Germany) , 1998 .

[14]  D. Blowes,et al.  Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Québec , 1998 .

[15]  M. Kühl,et al.  A H2S microsensor for profiling biofilms and sediments: application in an acidic lake sediment , 1998 .

[16]  R. Conrad,et al.  Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil , 1998 .

[17]  W. Salomons,et al.  Acidic Mining Lakes , 1998 .

[18]  K. Friese,et al.  Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes , 1998 .

[19]  S. Takayanagi,et al.  Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan , 1997 .

[20]  H. Cypionka,et al.  Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin , 1997 .

[21]  W. Babel,et al.  Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria , 1997 .

[22]  Steven C. Smith,et al.  Biogeochemistry of anaerobic lacustrine and paleosol sediments within an aerobic unconfined aquifer , 1997 .

[23]  M. Bender,et al.  Survival and Activity of Bacteria in a Deep, Aged Lake Sediment (Lake Constance) , 1997, Microbial Ecology.

[24]  L. A. Smock,et al.  Spatial and temporal variation of microbial respiration rates in a blackwater stream , 1996 .

[25]  D. S. Sheppard,et al.  Whangaehu River, New Zealand: geochemistry of a river discharging from an active crater lake , 1996 .

[26]  B. Namsaraev,et al.  Geochemical activity of sulfate-reducing bacteria in the bottom sediments of Lake Baikal , 1995 .

[27]  N. Revsbech,et al.  Estimation of Nitrification and Denitrification from Microprofiles of Oxygen and Nitrate in Model Sediment Systems , 1994, Applied and environmental microbiology.

[28]  M. Pusch,et al.  Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest) , 1994 .

[29]  Albert J. Klee,et al.  A computer program for the determination of most probable number and its confidence limits , 1993 .

[30]  D. Johnson,et al.  Biogeochemical cycling of iron and sulphur in leaching environments , 1993 .

[31]  G. Ferroni,et al.  Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines , 1993 .

[32]  Gatze Lettinga,et al.  The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content , 1993 .

[33]  P. Visscher,et al.  Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat , 1992 .

[34]  B. Jørgensen,et al.  Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms , 1992, Applied and environmental microbiology.

[35]  D. Johnson,et al.  Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. , 1992, Environmental pollution.

[36]  E. Bååth,et al.  Microbial biomass measured as total lipid phosphate in soils of different organic content , 1991 .

[37]  B. Jørgensen,et al.  Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark) , 1991, Applied and environmental microbiology.

[38]  J. Puhakka,et al.  Sulfur Reduction and Inhibition in Anaerobic Treatment of Simulated Pulp Mill Wastewater , 1989 .

[39]  D. Lovley,et al.  Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments , 1987, Applied and environmental microbiology.

[40]  D. Lovley,et al.  Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate , 1984, Applied and environmental microbiology.

[41]  J. Jones,et al.  Bacterial Reduction of Ferric Iron in a Stratified Eutrophic Lake , 1983 .

[42]  Abraham Lerman,et al.  Geochemical Processes: Water and Sediment Environments , 1979 .

[43]  J. Hobbie,et al.  Use of nuclepore filters for counting bacteria by fluorescence microscopy , 1977, Applied and environmental microbiology.

[44]  K. Satake Microbial Sulphate Reduction in a Volcanic Acid Lake having pH 1.8 to 2.0 , 1977 .

[45]  J. H. Tuttle,et al.  Microbial Dissimilatory Sulfur Cycle in Acid Mine Water , 1969, Journal of bacteriology.