Robust Parameter Settings for Variation Operators by Measuring the Resampling Ratio: A Study on Binary Constraint Satisfaction Problems

In this article, we try to provide insight into the consequence of mutation and crossover rates when solving binary constraint satisfaction problems. This insight is based on a measurement of the space searched by an evolutionary algorithm. From data empirically acquired we describe the relation between the success ratio and the searched space. This is achieved using the resampling ratio, which is a measure for the amount of points revisited by a search algorithm. This relation is based on combinations of parameter settings for the variation operators. We then show that the resampling ratio is useful for identifying the quality of parameter settings, and provide a range that corresponds to robust parameter settings.

[1]  Toby Walsh,et al.  The Constrainedness of Search , 1996, AAAI/IAAI, Vol. 1.

[2]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[3]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[4]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction a More Accurate Picture , 2022 .

[5]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[6]  Peter van Beek,et al.  On the Conversion between Non-Binary and Binary Constraint Satisfaction Problems , 1998, AAAI/IAAI.

[7]  Jano I. van Hemert,et al.  Comparing evolutionary algorithms on binary constraint satisfaction problems , 2003, IEEE Trans. Evol. Comput..

[8]  Toby Walsh,et al.  SAT v CSP , 2000, CP.

[9]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[10]  Jano I. van Hemert,et al.  Comparing Classical Methods for Solving Binary Constraint Satisfaction Problems with State of the Art Evolutionary Computation , 2002, EvoWorkshops.

[11]  Elena Marchiori,et al.  A genetic local search algorithm for random binary constraint satisfaction problems , 2000, SAC '00.

[12]  Barbara M. Smith In Search of Exceptionally Difficult Constraint Satisfaction Problems , 1995, Constraint Processing, Selected Papers.

[13]  Patrick Prosser,et al.  A Hybrid Genetic Algorithm for Pallet Loading , 1988, ECAI.

[14]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[15]  Tad Hogg,et al.  Problem Structure Heuristics and Scaling Behavior for Genetic Algorithms , 1996, Artif. Intell..

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Jano I. van Hemert,et al.  Measuring the Searched Space to Guide Efficiency: The Principle and Evidence on Constraint Satisfaction , 2002, PPSN.

[18]  James Bowen,et al.  Solving constraint satisfaction problems using hybrid evolutionary search , 1998, IEEE Trans. Evol. Comput..

[19]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  Volker Nissen,et al.  Evolutionary Algorithms in Management Applications , 1995 .

[22]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[23]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[24]  Charles J. Petrie,et al.  On the Equivalence of Constraint Satisfaction Problems , 1990, ECAI.