Simulation of multilevel switching in electrochemical metallization memory cells

We report on a simulation model for bipolar resistive switching in cation-migration based memristive devices. The model is based on the electrochemical driven growth and dissolution of a metallic filament. The origin of multilevel switching is proposed to be direct tunneling between the growing filament and the counter electrode. An important result of our parameter simulation studies is that different materials show the same experimental multilevel behavior. Our model fully reproduces the experimental data and allows for an explanation of the transition from bipolar to nonpolar switching.

[1]  L. Chua Resistance switching memories are memristors , 2011, Handbook of Memristor Networks.

[2]  D. Ielmini,et al.  Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories , 2011, Nanotechnology.

[3]  P. Gonon,et al.  Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 , 2011 .

[4]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[5]  Dmitri B. Strukov,et al.  Intrinsic constrains on thermally-assisted memristive switching , 2011 .

[6]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[7]  Masakazu Aono,et al.  The Atomic Switch , 2010, Proceedings of the IEEE.

[8]  Michael N. Kozicki,et al.  Power and Energy Perspectives of Nonvolatile Memory Technologies , 2010, Proceedings of the IEEE.

[9]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[10]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[11]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[12]  Rainer Waser,et al.  A Simulation Model of Resistive Switching in Electrochemical Metallization Memory Cells (ECM) , 2009 .

[13]  R. Waser,et al.  Resistive switching in electrochemical metallization memory cells , 2009 .

[14]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[15]  Qi Liu,et al.  Nonpolar Nonvolatile Resistive Switching in Cu Doped $\hbox{ZrO}_{2}$ , 2008, IEEE Electron Device Letters.

[16]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[17]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[18]  A self-terminated electrochemical fabrication of electrode pairs with angstrom-sized gaps , 2006 .

[19]  Juan Carlos Cuevas,et al.  The signature of chemical valence in the electrical conduction through a single-atom contact , 1998, Nature.

[20]  R. Gurney,et al.  Electronic Processes in Ionic Crystals , 1964 .

[21]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[22]  Michael Faraday,et al.  VI. Experimental researches in electricity.-Seventh Series , 1834, Philosophical Transactions of the Royal Society of London.