MULTIPHASE GAS IN GALAXY HALOS: THE O vi LYMAN-LIMIT SYSTEM TOWARD J1009+0713

We have serendipitously detected a strong O VI-bearing Lyman-limit system (LLS) at z{sub abs} = 0.3558 toward the quasi-stellar object (QSO) J1009+0713 (z{sub em} = 0.456) in our survey of low-redshift galaxy halos with the Hubble Space Telescope's (HST) Cosmic Origins Spectrograph. Its total rest-frame equivalent width of W{sub r} = 835 {+-} 49 mA and column density of log N(O VI) = 15.0 are the highest for an intervening absorber yet detected in any low-redshift QSO sightline, with absorption spanning at least four major kinematic component groups over 400 km s{sup -1} in its rest frame. HST/Wide Field Camera 3 images of the galaxy field show that the absorber is associated with two galaxies lying at 14 and 46 kpc from the QSO line of sight. The absorber is kinematically complex and there are no less than nine individual Mg II components spanning 200 km s{sup -1} in our Keck/HIRES optical data. The bulk of the absorbing gas traced by H I resides in two strong, blended component groups that possess a total log N(H I) {approx_equal} 18-18.8, but most of the O VI is associated with two outlying components with log N(H I) = 14.8 and 16.5. Themore » ion ratios and column densities of C, N, O, Mg, Si, S, and Fe, except the O VI, can be accommodated into a simple photoionization model in which diffuse, low-metallicity halo gas is exposed to a photoionizing field from stars in the nearby galaxies that propagates into the halo at 10% efficiency. In this model, the clouds have neutral fractions of {approx}1%-10% and thus total hydrogen column densities of log N(H) {approx_equal} 19.5. Direct measurement of the gas metallicity is precluded by saturation of the main components of H I, but we constrain the metallicity firmly within the range 0.1-1 Z{sub sun}, and photoionization modeling indirectly indicates a subsolar metallicity of 0.05-0.5 Z{sub sun}. This highly ionized, multiphase, possibly low-metallicity halo gas resembles gas with similar properties in the Milky Way halo and other low-redshift LLS, suggesting that at least some other galaxies have their star formation fueled by metal-poor gas accreting from the intergalactic medium and ionized by the stars in the host galaxy. As observed in the Milky Way high-velocity clouds, the strong detected O VI is not consistent with the photoionization scenario but is consistent with general picture in which O VI arises in interface material surrounding the photoionized clouds or in a hotter, diffuse component of the halo. The appearance of strong O VI and nine Mg II components in this system, and our review of similar systems in the literature, offer some support to this 'interface' picture of high-velocity O VI: the total strength of the O VI shows a positive correlation with the number of detected components in the low-ionization gas.« less

[1]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[2]  Bernard E. J. Pagel,et al.  On the composition of H II regions in southern galaxies – I. NGC 300 and 1365 , 1979 .

[3]  D. York,et al.  A SINFONI integral field spectroscopy survey for galaxy counterparts to damped Lyman α systems - II. Dynamical properties of the galaxies towards Q0302 − 223 and Q1009 − 0026 , 2010, 1009.0027.

[4]  B. Savage,et al.  Physical Properties and Baryonic Content of Low-Redshift Intergalactic Lyα and O VI Absorption Line Systems: The PG 1116+215 Sight Line* ** , 2004, astro-ph/0407549.

[5]  J. Bland-Hawthorn,et al.  The Escape of Ionizing Photons from the Galaxy , 1998, astro-ph/9810469.

[6]  K. Sembach,et al.  A Near-Solar Metallicity, Nitrogen-deficient Lyman Limit Absorber Associated with Two S0 Galaxies , 2005, astro-ph/0501475.

[7]  G. Williger,et al.  The Low-Redshift Lyα Forest toward PKS 0405–123 , 2005, astro-ph/0505586.

[8]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[9]  J. Bland-Hawthorn,et al.  Multiphase High-Velocity Clouds toward HE 0226–4110 and PG 0953+414 , 2005, astro-ph/0505299.

[10]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[11]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[12]  G. Williger,et al.  THE CONNECTION BETWEEN A LYMAN LIMIT SYSTEM, A VERY STRONG O vi ABSORBER, AND GALAXIES AT z ∼ 0.203 , 2008, 0812.4231.

[13]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[14]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[15]  S. S. Institute,et al.  Physical Properties, Baryon Content, and Evolution of the Lyα Forest: New Insights from High-Resolution Observations at z ≲ 0.4 , 2006, astro-ph/0612275.

[16]  Laboratoire d'Astrophysique de Marseille,et al.  SOAR imaging of sub‐damped Lyman α systems at z < 1 , 2010, 1009.0223.

[17]  D. York,et al.  USING 21 cm ABSORPTION IN SMALL IMPACT PARAMETER GALAXY–QUASAR PAIRS TO PROBE LOW-REDSHIFT DAMPED AND SUB-DAMPED Lyα SYSTEMS , 2009, 0912.2575.

[18]  K. Borkowski,et al.  Radiative magnetized thermal conduction fronts , 1990 .

[19]  Highly Ionized Gas Surrounding High-Velocity Cloud Complex C* , 2003, astro-ph/0310769.

[20]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[21]  J. Stocke,et al.  The Hot Intergalactic Medium-Galaxy Connection: Two Strong O VI Absorbers in the Sight Line toward PG 1211+143 , 2004, astro-ph/0411277.

[22]  J. Tinker,et al.  THE INCIDENCE OF COOL GAS IN ∼1013 M☉ HALOS , 2010, 1004.5378.

[23]  R. Indebetouw,et al.  O VI, N V, and C IV in the Galactic Halo. II. Velocity-Resolved Observations with the Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer , 2004 .

[24]  J. Tinker,et al.  AN EMPIRICAL CHARACTERIZATION OF EXTENDED COOL GAS AROUND GALAXIES USING Mg ii ABSORPTION FEATURES , 2010, 1004.0705.

[25]  B. Gibson,et al.  Hα Emission from High-Velocity Clouds and Their Distances , 2003, astro-ph/0307509.

[26]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[27]  C. Danforth,et al.  A LARGE RESERVOIR OF IONIZED GAS IN THE GALACTIC HALO: IONIZED SILICON IN HIGH-VELOCITY AND INTERMEDIATE-VELOCITY CLOUDS , 2009, 0904.4901.

[28]  Hsiao-Wen Chen,et al.  A STIS Survey for O VI Absorption Systems at 0.12 < z ≲ 0.5. I. The Statistical Properties of Ionized Gas , 2008 .

[29]  B. Savage,et al.  HIGHLY IONIZED PLASMA IN THE HALO OF A LUMINOUS SPIRAL GALAXY NEAR z = 0.225 , 2010, 1003.0446.

[30]  A. Sternberg,et al.  METAL-ION ABSORPTION IN CONDUCTIVELY EVAPORATING CLOUDS , 2010, 1002.1309.

[31]  Probing the Intergalactic Medium-Galaxy Connection toward PKS 0405–123. I. Ultraviolet Spectroscopy and Metal-Line Systems , 2004, astro-ph/0408294.

[32]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[33]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[34]  B. Savage,et al.  A MULTIPHASE ABSORBER CONTAINING O vi AND BROAD H i DIRECTLY TRACING 106 K PLASMA AT LOW REDSHIFT TOWARD HE 0153−4520 , 2011, 1102.2850.

[35]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[36]  B. Savage,et al.  O vi ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167 , 2010, 1007.0772.

[37]  J. Prochaska,et al.  QSO ABSORPTION SYSTEMS DETECTED IN Ne viii: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION , 2012, 1201.0939.

[38]  R. Sutherland,et al.  The Source of Ionization along the Magellanic Stream , 2007, 0711.0247.

[39]  Cambridge,et al.  The effects of spatially distributed ionization sources on the temperature structure of H ii regions , 2007, 0705.2726.

[40]  C. Danforth,et al.  The Low-z Intergalactic Medium. III. H I and Metal Absorbers at z < 0.4 , 2007, 0709.4030.

[41]  D. G. Hummer,et al.  Recombination-line intensities for hydrogenic ions. I - Case B calculations for H I and He II. [in astronomical objects , 1987 .

[42]  Highly Ionized High-Velocity Clouds: Hot Intergalactic Medium or Galactic Halo? , 2005, astro-ph/0501061.

[43]  B. Savage,et al.  FUSE and STIS Observations of the Warm-hot Intergalactic Medium toward PG 1259+593 , 2004, astro-ph/0403513.

[44]  The First Observations of Low-redshift Damped Lyα Systems with the Cosmic Origins Spectrograph , 2011, 1102.3927.

[45]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[46]  U. N. Dame,et al.  A High-Resolution Survey of Low-Redshift QSO Absorption Lines: Statistics and Physical Conditions of O VI Absorbers , 2007, 0706.1214.

[47]  Mitchell C. Begelman,et al.  Turbulent mixing layers in the interstellar medium of galaxies , 1993 .

[48]  D. Bowen,et al.  THE Mg ii CROSS-SECTION OF LUMINOUS RED GALAXIES , 2010, 1011.4947.

[49]  J. Cooke,et al.  Mg ii ABSORPTION CHARACTERISTICS OF A VOLUME-LIMITED SAMPLE OF GALAXIES AT z ∼ 0.1 , 2009, 0910.2458.

[50]  Y. Wadadekar,et al.  GMRT mini-survey to search for 21-cm absorption in quasar–galaxy pairs at z∼ 0.1 , 2010, 1007.0288.

[51]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[52]  Discovery of a Primitive Damped Lyα Absorber near an X-Ray-bright Galaxy Group in the Virgo Cluster* , 2004, astro-ph/0407465.

[53]  S. McGaugh,et al.  H II region abundances - Model oxygen line ratios , 1991 .

[54]  D. Calzetti,et al.  THE CALIBRATION OF MONOCHROMATIC FAR-INFRARED STAR FORMATION RATE INDICATORS , 2010, 1003.0961.

[55]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[56]  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[57]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[58]  J. Prochaska Quasars Probing Quasars , 2006 .

[59]  Gnat Orly,et al.  METAL-ABSORPTION COLUMN DENSITIES IN FAST RADIATIVE SHOCKS , 2009 .

[60]  J. Shull,et al.  HUBBLE SPACE TELESCOPE SURVEY OF INTERSTELLAR HIGH-VELOCITY Si iii , 2009, 0909.4900.